On automorphisms of commutative Moufang loops
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 108-114
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the automorphism group of any commutative Moufang loop $Q$ is an extension of the group $F(1)$ consisting of all automorphisms of the loop $Q$ which induce the identity mapping onto the factor-loop $Q/A(Q)$ of $Q$ by means of the automorphism group of the abelian group $Q/A(Q)$. We investigate the structure of the group $F(1)$ in the cases where the loop $Q$ is either centrally nilpotent, or finitely generated, or is a $ZA$-loop.
@article{DM_2011_23_2_a9,
author = {N. T. Lupas\c{c}o},
title = {On automorphisms of commutative {Moufang} loops},
journal = {Diskretnaya Matematika},
pages = {108--114},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a9/}
}
N. T. Lupasço. On automorphisms of commutative Moufang loops. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 108-114. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a9/