Symmetric linear spaces of graphs
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 103-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sets of graphs which are closed under the symmetric difference and renaming of vertices. We prove that for any $n$ there are at most 14 such sets consisting of graphs with $n$ vertices.
@article{DM_2011_23_2_a8,
     author = {D. V. Zakharova},
     title = {Symmetric linear spaces of graphs},
     journal = {Diskretnaya Matematika},
     pages = {103--107},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a8/}
}
TY  - JOUR
AU  - D. V. Zakharova
TI  - Symmetric linear spaces of graphs
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 103
EP  - 107
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a8/
LA  - ru
ID  - DM_2011_23_2_a8
ER  - 
%0 Journal Article
%A D. V. Zakharova
%T Symmetric linear spaces of graphs
%J Diskretnaya Matematika
%D 2011
%P 103-107
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a8/
%G ru
%F DM_2011_23_2_a8
D. V. Zakharova. Symmetric linear spaces of graphs. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 103-107. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a8/

[1] Alekseev V. E., Zakharova D. V., “O simmetricheskikh prostranstvakh grafov”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 14:1 (2007), 21–26 | MR

[2] Corneil D. G., Lerchs H., Stewart-Burlingham L., “Complement reducible graphs”, Discrete Appl. Math., 13 (1981), 163–174 | DOI | MR