Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2011_23_2_a7, author = {M. B. Abrosimov}, title = {Minimal vertex extensions of directed stars}, journal = {Diskretnaya Matematika}, pages = {93--102}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a7/} }
M. B. Abrosimov. Minimal vertex extensions of directed stars. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 93-102. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a7/
[1] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Moskva, 1997 | MR | Zbl
[2] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[3] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[4] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matematicheskie zametki, 88:5 (2010), 643–650
[6] Abrosimov M. B., “Minimalnye $k$-rasshireniya predpolnykh grafov”, Izvestiya VUZov. Matematika, 2003, no. 6(493), 3–11 | MR | Zbl
[7] Abrosimov M. B., “Minimalnye rasshireniya neorientirovannykh zvezd”, Teoreticheskie problemy informatiki i ee prilozhenii, 7, SGU, Saratov, 2006, 3–5
[8] Abrosimov M. B., “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestnik TGU, 2006, no. 17, 187–190