A combinatorial approach to calculation of moments of characteristics of runs in ternary Markov sequences
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 76-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the marginal and joint distributions of the numbers of values and the numbers of runs in ternary Markov sequences. A relative simplicity of such sequences permits to derive exact formulas for means, variances, and covariances with the use of direct combinatorial calculations.
@article{DM_2011_23_2_a6,
     author = {L. Ya. Savelyev and S. V. Balakin},
     title = {A combinatorial approach to calculation of moments of characteristics of runs in ternary {Markov} sequences},
     journal = {Diskretnaya Matematika},
     pages = {76--92},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a6/}
}
TY  - JOUR
AU  - L. Ya. Savelyev
AU  - S. V. Balakin
TI  - A combinatorial approach to calculation of moments of characteristics of runs in ternary Markov sequences
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 76
EP  - 92
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a6/
LA  - ru
ID  - DM_2011_23_2_a6
ER  - 
%0 Journal Article
%A L. Ya. Savelyev
%A S. V. Balakin
%T A combinatorial approach to calculation of moments of characteristics of runs in ternary Markov sequences
%J Diskretnaya Matematika
%D 2011
%P 76-92
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a6/
%G ru
%F DM_2011_23_2_a6
L. Ya. Savelyev; S. V. Balakin. A combinatorial approach to calculation of moments of characteristics of runs in ternary Markov sequences. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 76-92. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a6/

[1] Savelev L. Ya., Balakin S. V., “Sovmestnoe raspredelenie chisla edinits i chisla 1-serii v dvoichnoi markovskoi posledovatelnosti”, Diskretnaya matematika, 16:3 (2004), 43–62 | MR | Zbl

[2] Markov A. A., Ischislenie veroyatnostei, Tipografiya Imperatorskoi Akademii nauk, Sankt-Peterburg, 1913

[3] Kolmogorov A. N., Teoriya veroyatnostei i matematicheskaya statistika, Nauka, Moskva, 1986 | MR

[4] Romanovskii V. I., Diskretnye tsepi Markova, Gostekhizdat, Moskva, 1949

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, Moskva, 1984 | Zbl

[6] Savelev L. Ya., “Sluchainye sootvetstviya, dvoichnye matritsy i serii”, Diskretnaya matematika, 11:4 (1999), 3–26 | MR | Zbl

[7] Uchida M., “On number of occurrences of success runs of specified length in a higher-order two-state Markov chain”, Ann. Inst. Statist. Math., 50 (1998), 587–601 | DOI | MR | Zbl

[8] Smirnov N. V., Sarmanov O. V., Zakharov V. K., “Lokalnaya predelnaya teorema dlya chisel perekhodov v tsepi Markova i ee primeneniya”, Doklady AN SSSR, 167:6 (1966), 1238–1241 | MR

[9] Sarmanov O. V., Zakharov V. K., “Kombinatornaya zadacha N. V. Smirnova”, Doklady AN SSSR, 176:3 (1967), 530–532 | MR | Zbl

[10] Zakharov V. K., Sarmanov O. V., “O zakone raspredeleniya chisla serii v odnorodnoi tsepi Markova”, Doklady AN SSSR, 179:3 (1968), 526–528 | MR

[11] von S. Gerschgorin, “Über die Abgrenzung der Eigenwerte Einer Matrix”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1931, no. 6, 749–754 | Zbl

[12] Gantmakher F. R., Teoriya matrits, Nauka, Moskva, 1967 | MR