Prohibitions in discrete probabilistic statistical problems
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 53-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we continue our studies concerning consistent sequences of tests in discrete probabilistic statistical schemes. We introduce the concept of a “prohibition” in a discrete probabilistic scheme and give a series of examples where “prohibitions” arise. In statistical problems, tests exist whose critical sets are completely determined by means of “prohibitions”. We find necessary and sufficient conditions for existence of consistent sequences of tests in discrete schemes where all critical sets are defined by means of “prohibitions”.
@article{DM_2011_23_2_a3,
     author = {A. A. Grusho and E. E. Timonina},
     title = {Prohibitions in discrete probabilistic statistical problems},
     journal = {Diskretnaya Matematika},
     pages = {53--58},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a3/}
}
TY  - JOUR
AU  - A. A. Grusho
AU  - E. E. Timonina
TI  - Prohibitions in discrete probabilistic statistical problems
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 53
EP  - 58
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a3/
LA  - ru
ID  - DM_2011_23_2_a3
ER  - 
%0 Journal Article
%A A. A. Grusho
%A E. E. Timonina
%T Prohibitions in discrete probabilistic statistical problems
%J Diskretnaya Matematika
%D 2011
%P 53-58
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a3/
%G ru
%F DM_2011_23_2_a3
A. A. Grusho; E. E. Timonina. Prohibitions in discrete probabilistic statistical problems. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 53-58. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a3/

[1] Grusho A. A., Timonina E. E., “Nekotorye svyazi mezhdu diskretnymi statisticheskimi zadachami i svoistvami veroyatnostnykh mer na topologicheskikh prostranstvakh”, Diskretnaya matematika, 18:4 (2006), 128–136 | MR | Zbl

[2] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, Moskva, 1969 | MR | Zbl

[3] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, Moskva, 1968 | MR

[4] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei, Nauka, Moskva, 1993 | MR

[5] Grusho A., Grusho N., Timonina E., “Problems of modeling in the analysis of covert channels”, Lecture Notes Computer Sci., 6258, 2010, 118–124

[6] Simmons G. J., “The prisoner's problem and the subliminal channel”, Advances in Cryptology, Proceedings of Crypto' 83, ed. Chaum D., Plenum, 1984, 51–67 | MR

[7] Leman E., Proverka statisticheskikh gipotez, Nauka, Moskva, 1964 | MR