Asymptotic normality of the number of values of $m$-dependent random variables which occur a~given number of times
Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stationary sequence $x_1,x_2,\dots,x_t,\dots$ of random variables each of which takes values in the set $\mathcal N=\{1,\dots,N\}$. Let $\mu_r=\mu_r(n,N)$ be the number of values in the set $\mathcal N$ which occur $r$ times in the first $n$ elements of the sequence. In this paper, we obtain asymptotic formulas for the mean value $\mathbf E\mu_r(n,N)$ and the variance $\mathbf D\mu_r(n,N)$ and give sufficient conditions for asymptotic normality of the random variables $\mu_r(n,N)$ as $n,N\to\infty$ under the condition that the sequence consists of $m$-dependent random variables and the parameters of the distribution of the sequence vary in the so-called central domain.
@article{DM_2011_23_2_a2,
     author = {V. P. Chistyakov},
     title = {Asymptotic normality of the number of values of $m$-dependent random variables which occur a~given number of times},
     journal = {Diskretnaya Matematika},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_2_a2/}
}
TY  - JOUR
AU  - V. P. Chistyakov
TI  - Asymptotic normality of the number of values of $m$-dependent random variables which occur a~given number of times
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 41
EP  - 52
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_2_a2/
LA  - ru
ID  - DM_2011_23_2_a2
ER  - 
%0 Journal Article
%A V. P. Chistyakov
%T Asymptotic normality of the number of values of $m$-dependent random variables which occur a~given number of times
%J Diskretnaya Matematika
%D 2011
%P 41-52
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_2_a2/
%G ru
%F DM_2011_23_2_a2
V. P. Chistyakov. Asymptotic normality of the number of values of $m$-dependent random variables which occur a~given number of times. Diskretnaya Matematika, Tome 23 (2011) no. 2, pp. 41-52. http://geodesic.mathdoc.fr/item/DM_2011_23_2_a2/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[2] Tikhomirova M. I., Chistyakov V. P., “Ob asimptotike momentov chisla nepoyavivshikhsya $s$-tsepochek”, Diskretnaya matematika, 9:1 (1997), 12–29 | MR | Zbl

[3] Tikhomirova M. I., “Asimptoticheskaya normalnost chisla nepoyavivshikhsya nesploshnykh tsepochek iskhodov nezavisimykh ispytanii”, Diskretnaya matematika, 21:2 (2009), 112–125 | MR

[4] Mikhailov V. G., “Asimptoticheskaya normalnost v skheme konechno-zavisimogo razmescheniya chastits po yacheikam”, Matematicheskii sb., 119(161):4(12) (1982), 509–520 | MR | Zbl

[5] Shoitov A. M., “Normalnoe priblizhenie v zadache ob ekvivalentnykh tsepochkakh”, Trudy po diskretnoi matematike, 10, 2007, 326–349

[6] Janson S., “Normal convergence by higher semi-invariants with application to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 305–312 | DOI | MR | Zbl

[7] Mikhailov V. G., “Ob odnoi teoreme Yansona”, Teoriya veroyatnostei i ee primeneniya, 36:1 (1991), 168–170 | MR | Zbl