Investigation of the behaviour of triangulations on simplicial structures
Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 119-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of representation of topological models in the form of triangulation of cubic complexes is related to the character and behaviour of the triangulation in the $n$-dimensional space. As the base for analysis of these characteristics one can take the fundamental statistical information which gives the possibility to synthesise typical features of triangulation in model spaces of various dimensions. In this paper, we suggest an approach to solution of this problems in the case of analysing statistical features of triangulation in the space of dimension at most 4 with the use of binary coding.
@article{DM_2011_23_1_a9,
     author = {V. V. Semin},
     title = {Investigation of the behaviour of triangulations on simplicial structures},
     journal = {Diskretnaya Matematika},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a9/}
}
TY  - JOUR
AU  - V. V. Semin
TI  - Investigation of the behaviour of triangulations on simplicial structures
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 119
EP  - 131
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_1_a9/
LA  - ru
ID  - DM_2011_23_1_a9
ER  - 
%0 Journal Article
%A V. V. Semin
%T Investigation of the behaviour of triangulations on simplicial structures
%J Diskretnaya Matematika
%D 2011
%P 119-131
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_1_a9/
%G ru
%F DM_2011_23_1_a9
V. V. Semin. Investigation of the behaviour of triangulations on simplicial structures. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a9/

[1] Ryabov G. G., “Algoritmicheskie osnovy topologicheskogo protsessora”, Trudy Vtoroi Vserossiiskoi nauchnoi konferentsii “Metody i sredstva obrabotki informatsii”, VMiK MGU, Moskva, 2005, 53–58

[2] Pontryagin L. S., Osnovy kombinatornoi topologii, Nauka, Moskva, 1986 | MR

[3] Martinson L. K., Smirnov E. V., Kvantovaya fizika, Izd-vo MGTU im. N. E. Baumana, Moskva, 2004

[4] Ryabov G. G., “Markovskie protsessy v dinamike primitivnykh triangulyatsii v prostranstvakh $\mathbf R^2$ i $\mathbf R^3$”, Vychislitelnye metody i programmirovanie, 10:1 (2009), 1–8