Boolean functions without prediction
Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 102-118

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of Boolean functions with a finite-length barrier and suggest a criterion for a function to possess a barrier. We introduce the notion of a Boolean function without prediction which describes certain positive cryptographic properties of the corresponding transformations of binary sequences. We suggest a criterion for a Boolean function to belong to the class of functions without prediction.
@article{DM_2011_23_1_a8,
     author = {S. V. Smyshlyaev},
     title = {Boolean functions without prediction},
     journal = {Diskretnaya Matematika},
     pages = {102--118},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a8/}
}
TY  - JOUR
AU  - S. V. Smyshlyaev
TI  - Boolean functions without prediction
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 102
EP  - 118
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_1_a8/
LA  - ru
ID  - DM_2011_23_1_a8
ER  - 
%0 Journal Article
%A S. V. Smyshlyaev
%T Boolean functions without prediction
%J Diskretnaya Matematika
%D 2011
%P 102-118
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_1_a8/
%G ru
%F DM_2011_23_1_a8
S. V. Smyshlyaev. Boolean functions without prediction. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 102-118. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a8/