The critical $\omega$-foliated $\tau$-closed formations of finite groups
Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 94-101
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak H$ be a class of finite groups, $\tau$ be a subgroup functor; an $\omega$-foliated $\tau$-closed formation of finite groups $\mathfrak F$ with direction $\delta$ is called the minimal $\omega$-foliated $\tau$-closed non-$\mathfrak H$-formation with direction $\delta$, or, in other words, $\mathfrak H_{\omega\tau\delta}$-critical formation if $\mathfrak F\not\subseteq\mathfrak H$, but all proper $\omega$-foliated $\tau$-closed subformations with direction $\delta$ in $\mathfrak F$ are contained in the class $\mathfrak H$. In this paper we investigate the structure of the minimal $\omega$-foliated $\tau$-closed non-$\mathfrak H$-formations with $bp$-direction $\delta$ satisfying the condition $\delta\le\delta_3$ in the case where $\tau$ is a regular $\delta$-radical subgroup functor.
@article{DM_2011_23_1_a7,
author = {M. A. Korpacheva and M. M. Sorokina},
title = {The critical $\omega$-foliated $\tau$-closed formations of finite groups},
journal = {Diskretnaya Matematika},
pages = {94--101},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/}
}
TY - JOUR AU - M. A. Korpacheva AU - M. M. Sorokina TI - The critical $\omega$-foliated $\tau$-closed formations of finite groups JO - Diskretnaya Matematika PY - 2011 SP - 94 EP - 101 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/ LA - ru ID - DM_2011_23_1_a7 ER -
M. A. Korpacheva; M. M. Sorokina. The critical $\omega$-foliated $\tau$-closed formations of finite groups. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 94-101. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/