The critical $\omega$-foliated $\tau$-closed formations of finite groups
Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 94-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak H$ be a class of finite groups, $\tau$ be a subgroup functor; an $\omega$-foliated $\tau$-closed formation of finite groups $\mathfrak F$ with direction $\delta$ is called the minimal $\omega$-foliated $\tau$-closed non-$\mathfrak H$-formation with direction $\delta$, or, in other words, $\mathfrak H_{\omega\tau\delta}$-critical formation if $\mathfrak F\not\subseteq\mathfrak H$, but all proper $\omega$-foliated $\tau$-closed subformations with direction $\delta$ in $\mathfrak F$ are contained in the class $\mathfrak H$. In this paper we investigate the structure of the minimal $\omega$-foliated $\tau$-closed non-$\mathfrak H$-formations with $bp$-direction $\delta$ satisfying the condition $\delta\le\delta_3$ in the case where $\tau$ is a regular $\delta$-radical subgroup functor.
@article{DM_2011_23_1_a7,
     author = {M. A. Korpacheva and M. M. Sorokina},
     title = {The critical $\omega$-foliated $\tau$-closed formations of finite groups},
     journal = {Diskretnaya Matematika},
     pages = {94--101},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/}
}
TY  - JOUR
AU  - M. A. Korpacheva
AU  - M. M. Sorokina
TI  - The critical $\omega$-foliated $\tau$-closed formations of finite groups
JO  - Diskretnaya Matematika
PY  - 2011
SP  - 94
EP  - 101
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/
LA  - ru
ID  - DM_2011_23_1_a7
ER  - 
%0 Journal Article
%A M. A. Korpacheva
%A M. M. Sorokina
%T The critical $\omega$-foliated $\tau$-closed formations of finite groups
%J Diskretnaya Matematika
%D 2011
%P 94-101
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/
%G ru
%F DM_2011_23_1_a7
M. A. Korpacheva; M. M. Sorokina. The critical $\omega$-foliated $\tau$-closed formations of finite groups. Diskretnaya Matematika, Tome 23 (2011) no. 1, pp. 94-101. http://geodesic.mathdoc.fr/item/DM_2011_23_1_a7/

[1] Shemetkov L. A., “Ekrany stupenchatykh formatsii”, Trudy VI Vsesoyuznogo simpoziuma po teorii grupp, Naukova dumka, Kiev, 1980, 37–50 | MR

[2] Skiba A. N., “O kriticheskikh formatsiyakh”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, IM AN Ukrainy, Kiev, 1993, 250–268 | MR | Zbl

[3] Vedernikov V. A., Sorokina M. M., Kompozitsionnye i lokalnye nasledstvennye kriticheskie formatsii, Dep. VINITI 8.01.98, No 25-B98

[4] Selkin V. M., Skiba A. N., O $\mathfrak H_{\theta\omega}$-kriticheskikh formatsiyakh, Izd-vo Gomelskogo universiteta, Gomel, 1999

[5] Vedernikov V. A., Koptyukh D. G., Chastichno kompozitsionnye formatsii grupp, preprint No 2, BGPU, Bryansk, 1999

[6] Vedernikov V. A., Sorokina M. M., $\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp, preprint No 5, BGPU, Bryansk, 1999

[7] Vedernikov V. A., Sorokina M. M., $\Omega$-veernye formatsii i klassy Fittinga konechnykh grupp, preprint No 6, BGPU, Bryansk, 1999

[8] Sorokina M. M., Silenok N. V., “Kriticheskie $\Omega$-rassloennye formatsii konechnykh grupp”, Matematicheskie zametki, 72:2 (2002), 269–282 | MR | Zbl

[9] Korpacheva M. A., Sorokina M. M., “O kriticheskikh $\omega$-veernykh formatsiyakh konechnykh grupp”, Matematicheskie zametki, 79:1 (2006), 87–94 | MR | Zbl

[10] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[11] Kamornikov S. F., Selkin M. V., Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Minsk, 2003

[12] Vedernikov V. A., Sorokina M. M., “$\Omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matematicheskie zametki, 71:1 (2002), 43–60 | MR | Zbl

[13] Vedernikov V. A., “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, Trudy Ukrainskogo Matematicheskogo Kongressa “Algebra i teoriya chisel”, v. 1, Institut matematiki NAN Ukrainy, Kiev, 2002, 36–45 | MR | Zbl

[14] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, Moskva, 1978 | MR | Zbl

[15] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, Moskva, 1989 | MR | Zbl

[16] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin, 1992 | MR