The uniform $id$-decomposition of functions of many-valued logic over homogeneous functions
Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the uniform $id$-decomposition of functions of the class $P_k$ of functions of $k$-valued logic over the class $H^*_k$ of structural homogeneous functions and the class $D_k$ of homogeneous functions generated by the dual discriminator $d$. We find the degrees of the uniform $id$-decomposition of the class $P_k$ over the classes $H^*_k$ and $D_k$ and give the methods of construction of homogeneous functions over which the uniform $id$-decomposition of the class $P_k$ is realised.
@article{DM_2010_22_4_a4,
     author = {S. S. Marchenkov},
     title = {The uniform $id$-decomposition of functions of many-valued logic over homogeneous functions},
     journal = {Diskretnaya Matematika},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - The uniform $id$-decomposition of functions of many-valued logic over homogeneous functions
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 55
EP  - 63
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a4/
LA  - ru
ID  - DM_2010_22_4_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T The uniform $id$-decomposition of functions of many-valued logic over homogeneous functions
%J Diskretnaya Matematika
%D 2010
%P 55-63
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_4_a4/
%G ru
%F DM_2010_22_4_a4
S. S. Marchenkov. The uniform $id$-decomposition of functions of many-valued logic over homogeneous functions. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 55-63. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a4/

[1] Marchenkov S. S., “Odnorodnye algebry”, Problemy kibernetiki, 39, 1982, 85–106 | MR | Zbl

[2] Marchenkov S. S., “O ravnomernom $id$-razlozhenii bulevykh funktsii”, Diskretnaya matematika, 2:3 (1990), 29–41 | MR | Zbl

[3] Marchenkov S. S., “O stepeni ravnomernogo $id$-razlozheniya zamknutykh klassov v $P_k$”, Diskretnaya matematika, 3:4 (1991), 128–142 | MR | Zbl

[4] Marchenkov S. S., “Ob $id$-razlozheniyakh klassa $P_k$ nad predpolnymi klassami”, Diskretnaya matematika, 5:2 (1993), 98–110 | MR | Zbl

[5] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, Moskva, 2000 | MR | Zbl

[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986 | MR

[7] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, Moskva, 1966 | MR

[8] Marczewski E., “Homogeneous operations and homogeneous algebras”, Fundam. Math., 56 (1964), 81–103 | MR | Zbl