Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy
Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain two-sided bounds and asymptotic formulas for the number of Boolean functions of $n$ variables which are approximated by affine or linear Boolean functions with a given accuracy.
@article{DM_2010_22_4_a0,
     author = {A. M. Zubkov and A. A. Serov},
     title = {Bounds for the number of {Boolean} functions admitting affine approximations of a~given accuracy},
     journal = {Diskretnaya Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 3
EP  - 19
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/
LA  - ru
ID  - DM_2010_22_4_a0
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy
%J Diskretnaya Matematika
%D 2010
%P 3-19
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/
%G ru
%F DM_2010_22_4_a0
A. M. Zubkov; A. A. Serov. Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/