Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy
Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 3-19
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain two-sided bounds and asymptotic formulas for the number of Boolean functions of $n$ variables which are approximated by affine or linear Boolean functions with a given accuracy.
@article{DM_2010_22_4_a0,
author = {A. M. Zubkov and A. A. Serov},
title = {Bounds for the number of {Boolean} functions admitting affine approximations of a~given accuracy},
journal = {Diskretnaya Matematika},
pages = {3--19},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/}
}
TY - JOUR AU - A. M. Zubkov AU - A. A. Serov TI - Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy JO - Diskretnaya Matematika PY - 2010 SP - 3 EP - 19 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/ LA - ru ID - DM_2010_22_4_a0 ER -
A. M. Zubkov; A. A. Serov. Bounds for the number of Boolean functions admitting affine approximations of a~given accuracy. Diskretnaya Matematika, Tome 22 (2010) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/DM_2010_22_4_a0/