On large distances between neighbouring zeros of the Riemann zeta-function
Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new estimate of the number of zeros $\varrho_n=\beta_n+i\gamma_n$ of the Riemann zeta-function with ordinates $\gamma_n$ belonging to a given interval and for which the distance to the next zero is sufficiently large in comparison with the mean value $2\pi(\ln(\gamma_n/(2\pi)))^{-1}$ is obtained.
@article{DM_2010_22_3_a6,
     author = {R. N. Boyarinov},
     title = {On large distances between neighbouring zeros of the {Riemann} zeta-function},
     journal = {Diskretnaya Matematika},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_3_a6/}
}
TY  - JOUR
AU  - R. N. Boyarinov
TI  - On large distances between neighbouring zeros of the Riemann zeta-function
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 75
EP  - 82
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_3_a6/
LA  - ru
ID  - DM_2010_22_3_a6
ER  - 
%0 Journal Article
%A R. N. Boyarinov
%T On large distances between neighbouring zeros of the Riemann zeta-function
%J Diskretnaya Matematika
%D 2010
%P 75-82
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_3_a6/
%G ru
%F DM_2010_22_3_a6
R. N. Boyarinov. On large distances between neighbouring zeros of the Riemann zeta-function. Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 75-82. http://geodesic.mathdoc.fr/item/DM_2010_22_3_a6/

[1] Karatsuba A. A., Korolev M. A., “Argument dzeta-funktsii Rimana”, Uspekhi matem. nauk, 60:3(363) (2005), 41–96 | MR | Zbl

[2] Fujii A., “On the difference between $r$ consecutive ordinates of the zeros of the Riemann zeta-function”, Proc. Japan Acad., 51 (1975), 741–743 | DOI | MR | Zbl

[3] Ivić A., “On small values of the Riemann zeta-function on the critical line and gaps between zeros”, Liet. Mat. Rink., 42 (2002), 25–36 | MR | Zbl

[4] Fujii A., “On the gaps between consecutive zeros of the Riemann zeta-function”, Proc. Japan Acad. Ser. Math. Sci., 66 (1990), 97–100 | DOI | MR | Zbl

[5] Korolev M. A., “O bolshikh rasstoyaniyakh mezhdu sosednimi nulyami dzeta-funktsii Rimana”, Izv. RAN. Ser. matem., 72:2 (2008), 91–104 | MR | Zbl

[6] Karatsuba A. A., Korolev M. A., “Povedenie argumenta dzeta-funktsii Rimana na kriticheskoi pryamoi”, Uspekhi matem. nauk, 61:3(369) (2006), 3–92 | MR | Zbl

[7] Littlewood J. E., “On the zeros of the Riemann zeta-function”, Proc. Cambridge Phil. Soc., 22 (1924), 295–318 | DOI | Zbl