An estimate of the probability of localisation of the diameter of a~random scale-free graph
Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of the probability of localisation of the diameter of a scale-free random graph is given; this estimate improves the estimate obtained in 2004 by B. Bollobás and O. Riordan. Some possible applications of such graphs to analysis of complex stochastic networks are mentioned.
@article{DM_2010_22_3_a3,
     author = {M. M. Musin},
     title = {An estimate of the probability of localisation of the diameter of a~random scale-free graph},
     journal = {Diskretnaya Matematika},
     pages = {34--43},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_3_a3/}
}
TY  - JOUR
AU  - M. M. Musin
TI  - An estimate of the probability of localisation of the diameter of a~random scale-free graph
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 34
EP  - 43
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_3_a3/
LA  - ru
ID  - DM_2010_22_3_a3
ER  - 
%0 Journal Article
%A M. M. Musin
%T An estimate of the probability of localisation of the diameter of a~random scale-free graph
%J Diskretnaya Matematika
%D 2010
%P 34-43
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_3_a3/
%G ru
%F DM_2010_22_3_a3
M. M. Musin. An estimate of the probability of localisation of the diameter of a~random scale-free graph. Diskretnaya Matematika, Tome 22 (2010) no. 3, pp. 34-43. http://geodesic.mathdoc.fr/item/DM_2010_22_3_a3/

[1] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2004

[2] Ore O., Teoriya grafov, Librikon, Moskva, 2009

[3] Bollobas B., Random graphs, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[4] Albert R., Barabasi A.-L., “Emergence of scaling in random networks”, Science, 286 (1999), 509–512 | DOI | MR

[5] Albert R., Barabasi A.-L., “Power-law distribution of the world wide web”, Science, 287 (2000), 2115 | DOI

[6] Bollobas B., Riordan O., Spencer J., Tusnady G., “The degree sequence of a scale-free random graph process”, Random Structures and Algorithms, 18 (2000), 279–290 | DOI | MR

[7] Bollobas B., Riordan O., “Robustness and vulnerability of scale-free random graphs”, Internet Math., 1 (2003), 1–35 | MR | Zbl

[8] Bollobas B., Riordan O., “Coupling of scale-free and classical random graphs”, Internet Math., 1 (2003), 215–225 | MR

[9] Bollobas B., Riordan O., “Mathematical results on scale-free random graphs”, Hand Book of Graphs and Networks, Wiley, Weinheim, 2003, 1–34 | MR

[10] Bollobas B., Riordan O., “The diameter of a scale-free graph”, Combinatorics, 24 (2004), 1–34 | DOI | MR | Zbl

[11] Faloutsos M., Faloutsos P., Faloutsos C., “On power-law relationships of internet topology”, Computer Communications Rev., 29 (1999), 251–262 | DOI

[12] Cooper C., Frieze A., “A general model of web graphs”, Random Structures and Algorithms, 22 (2003), 311–335 | DOI | MR | Zbl

[13] Kumar R., Novak J., Tomkins A., “Structure and evolution of online social networks”, Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, 2006, 611–617

[14] Li L., Anderson D., Doyle J. C., Willinger W., “Toward a theory of scale free graphs definition properties and implications”, Internet Math., 2 (2006), 431–524 | MR

[15] Mitzenmacher M., “A brief history of generative models for power law and lognormal distributions”, Internet Math., 1 (2003), 226–251 | MR

[16] Mitzenmacher M., “Editorial: The future of power law research”, Internet Math., 2 (2006), 552–534 | MR

[17] Mori T., “On random trees”, Stud. Sci. Math. Hung., 39 (2003), 143–155 | MR

[18] Mori T., “The maximum degree of the Barabasi–Albert random tree”, Comb. Probab. Comput., 14 (2005), 339–348 | DOI | MR | Zbl

[19] Willinger W., Anderson D., Doyle J. C., “Mathematics and the Internet: A source of enormous confusion and great potential”, Notes of the AMS, 56 (2009), 586–599 | MR | Zbl