On the potential divisibility of matrices over distributive lattices
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 148-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider matrices of arbitrary sizes (including infinite matrices) over a distributive lattice $L$ and prove that if $L=2^X$ is a lattice of all subsets of a set $X$, then the potential divisibility of matrices (from the left or from the right) of one of the matrices by the other matrix is equivalent to the usual divisibility. In particular, in the semigroup of square matrices over the lattice $2^X$ the Green relation $\mathscr L$ coincides with the generalised Green relation $\mathscr L^*$.
@article{DM_2010_22_2_a10,
     author = {I. B. Kozhukhov and V. A. Yaroshevich},
     title = {On the potential divisibility of matrices over distributive lattices},
     journal = {Diskretnaya Matematika},
     pages = {148--159},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - V. A. Yaroshevich
TI  - On the potential divisibility of matrices over distributive lattices
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 148
EP  - 159
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/
LA  - ru
ID  - DM_2010_22_2_a10
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A V. A. Yaroshevich
%T On the potential divisibility of matrices over distributive lattices
%J Diskretnaya Matematika
%D 2010
%P 148-159
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/
%G ru
%F DM_2010_22_2_a10
I. B. Kozhukhov; V. A. Yaroshevich. On the potential divisibility of matrices over distributive lattices. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 148-159. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/

[1] Lyapin E. S., Polugruppy, Fizmatlit, Moskva, 1960 | MR | Zbl

[2] Shutov E. G., “Potentsialnaya delimost elementov v polugruppakh”, Uch. zap. Leningr. gos. ped. in-ta im. Gertsena, 166, 1958, 75–103

[3] Clark C. E., Carruth J. H., “Generalized Green's theories”, Semigroup Forum, 20 (1980), 95–127 | DOI | MR | Zbl

[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, Moskva, 1972 | Zbl

[5] Grettser G., Obschaya teoriya reshetok, Nauka, Moskva, 1982 | MR

[6] Kim K. H., Boolean matrix theory and applications, Marcel Dekker, New York, 1982 | MR | Zbl

[7] Poplavskii B. B., “O rangakh, klassakh Grina i teorii opredelitelei bulevykh matrits”, Diskretnaya matematika, 20:4 (2008), 42–60 | MR | Zbl

[8] Fountain J. B., “Abundant semigroups”, Proc. London Math. Soc., 44:3 (1982), 103–129 | DOI | MR | Zbl

[9] Markowsky G., “Ordering $D$-classes and computing Schein rank is hard”, Semigroup Forum, 44:3 (1992), 373–375 | DOI | MR | Zbl