On the potential divisibility of matrices over distributive lattices
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 148-159
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider matrices of arbitrary sizes (including infinite matrices) over a distributive lattice $L$ and prove that if $L=2^X$ is a lattice of all subsets of a set $X$, then the potential divisibility of matrices (from the left or from the right) of one of the matrices by the other matrix is equivalent to the usual divisibility. In particular, in the semigroup of square matrices over the lattice $2^X$ the Green relation $\mathscr L$ coincides with the generalised Green relation $\mathscr L^*$.
@article{DM_2010_22_2_a10,
author = {I. B. Kozhukhov and V. A. Yaroshevich},
title = {On the potential divisibility of matrices over distributive lattices},
journal = {Diskretnaya Matematika},
pages = {148--159},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/}
}
TY - JOUR AU - I. B. Kozhukhov AU - V. A. Yaroshevich TI - On the potential divisibility of matrices over distributive lattices JO - Diskretnaya Matematika PY - 2010 SP - 148 EP - 159 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/ LA - ru ID - DM_2010_22_2_a10 ER -
I. B. Kozhukhov; V. A. Yaroshevich. On the potential divisibility of matrices over distributive lattices. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 148-159. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a10/