Asymptotic properties of multitype critical branching processes evolving in a~random environment
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 22-40
Voir la notice de l'article provenant de la source Math-Net.Ru
For an extended class of multitype critical branching processes in a random environment, the asymptotic behaviour of the survival probability is found under the conditions which are weaker than those known earlier even for the single-type case. A functional limit theorem is proved for the number of particles in the process at moments $nt$, $0\leq t\leq1$, conditioned on its survival up to moment $n$.
@article{DM_2010_22_2_a1,
author = {V. A. Vatutin and E. E. Dyakonova},
title = {Asymptotic properties of multitype critical branching processes evolving in a~random environment},
journal = {Diskretnaya Matematika},
pages = {22--40},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. Dyakonova TI - Asymptotic properties of multitype critical branching processes evolving in a~random environment JO - Diskretnaya Matematika PY - 2010 SP - 22 EP - 40 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a1/ LA - ru ID - DM_2010_22_2_a1 ER -
V. A. Vatutin; E. E. Dyakonova. Asymptotic properties of multitype critical branching processes evolving in a~random environment. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 22-40. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a1/