Poisson-type theorems for the number of special solutions of a~random linear inclusion
Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

For given sets $D$ and $B$ of vectors of linear spaces over a finite field of dimensions $n$ and $T$, respectively, and a random $T\times n$ matrix $A$ over this field, we consider the distribution of the number of vectors satisfying the system of relations $x\in D$, $Ax\in B$ (that is, the number of solutions of the random linear inclusion $Ax\in B$ belonging to the set $D$). The conditions of convergence of this distribution, as $n,T\to\infty$, to the simple and compound Poisson distributions are given. These conditions require that the distribution of the matrix $A$ converge to the uniform distribution and at least one of the sets $D$ and $B$ satisfy the condition which is called here the condition of asymptotic freedom from linear combinations. These results generalise the known limit theorems on the number of special solutions of a system of random linear equations. In particular, they give a possibility to describe the asymptotic behaviour of the number of approximate solutions of a priori solvable systems.
@article{DM_2010_22_2_a0,
     author = {V. A. Kopyttsev and V. G. Mikhailov},
     title = {Poisson-type theorems for the number of special solutions of a~random linear inclusion},
     journal = {Diskretnaya Matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_2_a0/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
AU  - V. G. Mikhailov
TI  - Poisson-type theorems for the number of special solutions of a~random linear inclusion
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 3
EP  - 21
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_2_a0/
LA  - ru
ID  - DM_2010_22_2_a0
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%A V. G. Mikhailov
%T Poisson-type theorems for the number of special solutions of a~random linear inclusion
%J Diskretnaya Matematika
%D 2010
%P 3-21
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_2_a0/
%G ru
%F DM_2010_22_2_a0
V. A. Kopyttsev; V. G. Mikhailov. Poisson-type theorems for the number of special solutions of a~random linear inclusion. Diskretnaya Matematika, Tome 22 (2010) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/DM_2010_22_2_a0/

[1] Kopyttsev V. A., “O chisle reshenii sistem lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | MR | Zbl

[2] Kopyttsev V. A., “O chisle reshenii sistemy sluchainykh lineinykh uravnenii”, Diskretnaya matematika, 18:1 (2006), 40–62 | MR | Zbl

[3] Mikhailov V. G., “O predelnoi teoreme B. A. Sevastyanova dlya summ zavisimykh sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:3 (2003), 571–578

[4] Mikhailov V. G., “Predelnye teoremy dlya chisla tochek sluchainogo lineinogo podprostranstva, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 15:2 (2003), 128–137 | MR | Zbl

[5] Mikhailov V. G., “Predelnye teoremy dlya chisla reshenii sistemy sluchainykh lineinykh uravnenii, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 19:1 (2007), 17–26 | MR | Zbl