On the complexity of the $\mathscr E^2$ Grzegorczyk class
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define several abstract computing devices which allow us to characterise the $\mathscr E^2$ class of the Grzegorczyk hierarchy. For each of these devices, we estimate the time needed to compute functions of the class $\mathscr E^2$.
@article{DM_2010_22_1_a1,
     author = {S. S. Marchenkov},
     title = {On the complexity of the $\mathscr E^2$ {Grzegorczyk} class},
     journal = {Diskretnaya Matematika},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a1/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the complexity of the $\mathscr E^2$ Grzegorczyk class
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 5
EP  - 16
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a1/
LA  - ru
ID  - DM_2010_22_1_a1
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the complexity of the $\mathscr E^2$ Grzegorczyk class
%J Diskretnaya Matematika
%D 2010
%P 5-16
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_1_a1/
%G ru
%F DM_2010_22_1_a1
S. S. Marchenkov. On the complexity of the $\mathscr E^2$ Grzegorczyk class. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a1/

[1] Beltyukov A. P., “Mashinnoe opisanie i ierarkhiya nachalnykh klassov Gzhegorchika”, Zapiski nauchn. seminarov Leningradskogo otd. Matem. in-ta im. V. A. Steklova AN SSSR, 88, 1979, 30–46 | MR | Zbl

[2] Varshavskii V. I., Marakhovskii V. B., Peschanskii V. A., Rozenblyum L. Ya., Odnorodnye struktury, Energiya, Moskva, 1973

[3] Volkov S. A., “Primer prostoi kvaziuniversalnoi funktsii v klasse $\mathcal E^2$ ierarkhii Gzhegorchika”, Diskretnaya matematika, 18:4 (2006), 31–44 | MR | Zbl

[4] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Osnovy teorii odnorodnykh struktur, Nauka, Moskva, 1990 | MR

[5] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, Moskva, 1986 | MR

[6] Marchenkov S. S., “Ustranenie skhem rekursii v klasse $\mathcal E^2$ Gzhegorchika”, Matem. zametki, 5:5 (1969), 561–568 | MR | Zbl

[7] Marchenkov S. S., “Ob ogranichennykh rekursiyakh”, Math. Balk., 2 (1972), 124–142

[8] Marchenkov S. S., “Bazisy po superpozitsii v klassakh rekursivnykh funktsii”, Matem. voprosy kibern., 3, 1991, 115–139 | MR | Zbl

[9] Marchenkov S. S., Elementarnye rekursivnye funktsii, MTsNMO, Moskva, 2003

[10] Minskii M., Vychisleniya i avtomaty, Mir, Moskva, 1971 | MR

[11] Gzhegorchik A., “Nekotorye klassy rekursivnykh funktsii”, Problemy matematicheskoi logiki, 7, 1970, 9–49

[12] Kuroda S. I., “Klassy yazykov i lineino ogranichennye avtomaty”, Kibern. sb., 9 (1972), 36–51 | Zbl

[13] Myhill J., Linearly bounded automata, Wright Air Development Division Technical Note 60–165, Wright-Patterson Air Force Base, Ohio, 1960