Rings over which all finitely generated modules are $\aleph_0$-injective
Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

All finitely generated right $A$-modules are $\aleph_0$-injective if and only if $A$ is a regular, right $\aleph_0$-injective ring.
@article{DM_2009_21_4_a5,
     author = {A. A. Tuganbaev},
     title = {Rings over which all finitely generated modules are $\aleph_0$-injective},
     journal = {Diskretnaya Matematika},
     pages = {76--81},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_4_a5/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings over which all finitely generated modules are $\aleph_0$-injective
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 76
EP  - 81
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_4_a5/
LA  - ru
ID  - DM_2009_21_4_a5
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings over which all finitely generated modules are $\aleph_0$-injective
%J Diskretnaya Matematika
%D 2009
%P 76-81
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_4_a5/
%G ru
%F DM_2009_21_4_a5
A. A. Tuganbaev. Rings over which all finitely generated modules are $\aleph_0$-injective. Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 76-81. http://geodesic.mathdoc.fr/item/DM_2009_21_4_a5/

[1] Kash F., Moduli i koltsa, Mir, Moskva, 1981 | MR

[2] Feis K., Algebra: koltsa, moduli i kategorii, V. 2, Mir, Moskva, 1979 | MR

[3] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl

[4] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | MR | Zbl