Rings over which all finitely generated modules are $\aleph_0$-injective
Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 76-81
All finitely generated right $A$-modules are $\aleph_0$-injective if and only if $A$ is a regular, right $\aleph_0$-injective ring.
@article{DM_2009_21_4_a5,
author = {A. A. Tuganbaev},
title = {Rings over which all finitely generated modules are $\aleph_0$-injective},
journal = {Diskretnaya Matematika},
pages = {76--81},
year = {2009},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2009_21_4_a5/}
}
A. A. Tuganbaev. Rings over which all finitely generated modules are $\aleph_0$-injective. Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 76-81. http://geodesic.mathdoc.fr/item/DM_2009_21_4_a5/
[1] Kash F., Moduli i koltsa, Mir, Moskva, 1981 | MR
[2] Feis K., Algebra: koltsa, moduli i kategorii, V. 2, Mir, Moskva, 1979 | MR
[3] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl
[4] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | MR | Zbl