Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series
Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 30-38
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a representation of the number $K_n$ of repetition-free Boolean functions of $n$ variables over the elementary basis $\{\,\vee,\bar{}\,\}$ in the form of a convergent exponential power series. This representation is the simplest representation among a number of similar formulas containing different combinatorial numbers. The obtained result gives a possibility to find the asymptotics of $K_n$.
@article{DM_2009_21_4_a2,
author = {O. V. Zubkov},
title = {Finding and estimating the number of repetition-free {Boolean} functions over the elementary basis in the form of a~convergent series},
journal = {Diskretnaya Matematika},
pages = {30--38},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/}
}
TY - JOUR AU - O. V. Zubkov TI - Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series JO - Diskretnaya Matematika PY - 2009 SP - 30 EP - 38 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/ LA - ru ID - DM_2009_21_4_a2 ER -
%0 Journal Article %A O. V. Zubkov %T Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series %J Diskretnaya Matematika %D 2009 %P 30-38 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/ %G ru %F DM_2009_21_4_a2
O. V. Zubkov. Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series. Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 30-38. http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/