Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series
Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 30-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a representation of the number $K_n$ of repetition-free Boolean functions of $n$ variables over the elementary basis $\{\,\vee,\bar{}\,\}$ in the form of a convergent exponential power series. This representation is the simplest representation among a number of similar formulas containing different combinatorial numbers. The obtained result gives a possibility to find the asymptotics of $K_n$.
@article{DM_2009_21_4_a2,
     author = {O. V. Zubkov},
     title = {Finding and estimating the number of repetition-free {Boolean} functions over the elementary basis in the form of a~convergent series},
     journal = {Diskretnaya Matematika},
     pages = {30--38},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/}
}
TY  - JOUR
AU  - O. V. Zubkov
TI  - Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 30
EP  - 38
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/
LA  - ru
ID  - DM_2009_21_4_a2
ER  - 
%0 Journal Article
%A O. V. Zubkov
%T Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series
%J Diskretnaya Matematika
%D 2009
%P 30-38
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/
%G ru
%F DM_2009_21_4_a2
O. V. Zubkov. Finding and estimating the number of repetition-free Boolean functions over the elementary basis in the form of a~convergent series. Diskretnaya Matematika, Tome 21 (2009) no. 4, pp. 30-38. http://geodesic.mathdoc.fr/item/DM_2009_21_4_a2/