On a constructive approach to the calculation of cardinality of the Ryser classes
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 33-36
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of calculation of cardinality of the classes of square matrices consisting of zeros and ones with given values of row and column sums. We obtain a recurrence relation which gives a possibility to calculate the cardinalities of these classes. In the proofs, we use a constructive approach, that is, we construct the combinatorial objects with given characteristics and calculate the number of distinct objects. An example of the use of the obtained relation is given.
@article{DM_2009_21_3_a3,
author = {V. S. Krotkin and O. V. Kuzmin},
title = {On a~constructive approach to the calculation of cardinality of the {Ryser} classes},
journal = {Diskretnaya Matematika},
pages = {33--36},
year = {2009},
volume = {21},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a3/}
}
V. S. Krotkin; O. V. Kuzmin. On a constructive approach to the calculation of cardinality of the Ryser classes. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 33-36. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a3/
[1] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, Moskva, 2000 | MR | Zbl
[2] Gale D., “A theorem on flows in networks”, Pacific J. Math., 7 (1957), 1073–1082 | MR | Zbl
[3] Ryser H. J., “Combinatorial properties of matrices of zeros and ones”, Canadian J. Math., 9 (1957), 371–377 | MR | Zbl
[4] Wang B. Y., Zhang F., “On the precise number of $(0,1)$-matrices in $U(R,S)$”, Discrete Math., 187 (1998), 211–220 | DOI | MR | Zbl
[5] Markov A. A., O logike konstruktivnoi matematiki, Znanie, Moskva, 1972