On the estimation of the periods of noisy binary periodic sequences
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 24-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

For estimation of the lengths of periods of noisy binary sequences we suggest and investigate statistics equal to the logarithm of the goodness-of-fit functions and functions close to them.
@article{DM_2009_21_3_a2,
     author = {M. I. Tikhomirova and V. P. Chistyakov},
     title = {On the estimation of the periods of noisy binary periodic sequences},
     journal = {Diskretnaya Matematika},
     pages = {24--32},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a2/}
}
TY  - JOUR
AU  - M. I. Tikhomirova
AU  - V. P. Chistyakov
TI  - On the estimation of the periods of noisy binary periodic sequences
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 24
EP  - 32
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a2/
LA  - ru
ID  - DM_2009_21_3_a2
ER  - 
%0 Journal Article
%A M. I. Tikhomirova
%A V. P. Chistyakov
%T On the estimation of the periods of noisy binary periodic sequences
%J Diskretnaya Matematika
%D 2009
%P 24-32
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a2/
%G ru
%F DM_2009_21_3_a2
M. I. Tikhomirova; V. P. Chistyakov. On the estimation of the periods of noisy binary periodic sequences. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 24-32. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a2/

[1] Brillindzher D., Vremennye ryady, Mir, Moskva, 1980 | MR

[2] Kharin Yu. S., Bernik V. I., Matveev G. V., Agievich S. V., Matematicheskie i kompyuternye osnovy kriptografii, Novoe znanie, Minsk, 2003