On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the combinatorial vector minimax problem with ordered criteria. We formulate necessary and sufficient conditions for the five known types of stability of the problem which describe the behaviour of the lexicographic set with respect to perturbations of the initial data for the vector criterion.
@article{DM_2009_21_3_a0,
     author = {E. E. Gurevskii and V. A. Emelichev},
     title = {On five types of stability of the lexicographic variant of the combinatorial bottleneck problem},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/}
}
TY  - JOUR
AU  - E. E. Gurevskii
AU  - V. A. Emelichev
TI  - On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 3
EP  - 13
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/
LA  - ru
ID  - DM_2009_21_3_a0
ER  - 
%0 Journal Article
%A E. E. Gurevskii
%A V. A. Emelichev
%T On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
%J Diskretnaya Matematika
%D 2009
%P 3-13
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/
%G ru
%F DM_2009_21_3_a0
E. E. Gurevskii; V. A. Emelichev. On five types of stability of the lexicographic variant of the combinatorial bottleneck problem. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/