On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the combinatorial vector minimax problem with ordered criteria. We formulate necessary and sufficient conditions for the five known types of stability of the problem which describe the behaviour of the lexicographic set with respect to perturbations of the initial data for the vector criterion.
@article{DM_2009_21_3_a0,
author = {E. E. Gurevskii and V. A. Emelichev},
title = {On five types of stability of the lexicographic variant of the combinatorial bottleneck problem},
journal = {Diskretnaya Matematika},
pages = {3--13},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/}
}
TY - JOUR AU - E. E. Gurevskii AU - V. A. Emelichev TI - On five types of stability of the lexicographic variant of the combinatorial bottleneck problem JO - Diskretnaya Matematika PY - 2009 SP - 3 EP - 13 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/ LA - ru ID - DM_2009_21_3_a0 ER -
E. E. Gurevskii; V. A. Emelichev. On five types of stability of the lexicographic variant of the combinatorial bottleneck problem. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/