On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the combinatorial vector minimax problem with ordered criteria. We formulate necessary and sufficient conditions for the five known types of stability of the problem which describe the behaviour of the lexicographic set with respect to perturbations of the initial data for the vector criterion.
@article{DM_2009_21_3_a0,
     author = {E. E. Gurevskii and V. A. Emelichev},
     title = {On five types of stability of the lexicographic variant of the combinatorial bottleneck problem},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/}
}
TY  - JOUR
AU  - E. E. Gurevskii
AU  - V. A. Emelichev
TI  - On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 3
EP  - 13
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/
LA  - ru
ID  - DM_2009_21_3_a0
ER  - 
%0 Journal Article
%A E. E. Gurevskii
%A V. A. Emelichev
%T On five types of stability of the lexicographic variant of the combinatorial bottleneck problem
%J Diskretnaya Matematika
%D 2009
%P 3-13
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/
%G ru
%F DM_2009_21_3_a0
E. E. Gurevskii; V. A. Emelichev. On five types of stability of the lexicographic variant of the combinatorial bottleneck problem. Diskretnaya Matematika, Tome 21 (2009) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2009_21_3_a0/

[1] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995 | Zbl

[2] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Naukova dumka, Kiev, 2003

[3] Lebedeva T. T., Sergienko T. I., “Sravnitelnyi analiz razlichnykh tipov ustoichivosti po ogranicheniyam vektornoi zadachi tselochislennoi optimizatsii”, Kibernetika i sistemnyi analiz, 2004, no. 1, 63–70 | MR | Zbl

[4] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestv optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 2005, no. 4, 90–100 | MR | Zbl

[5] Lebedeva T. T., Sergienko T. I., “Ustoichivost po vektornomu kriteriyu i ogranicheniyam vektornoi tselochislennoi zadachi kvadratichnogo programmirovaniya”, Kibernetika i sistemnyi analiz, 2006, no. 5, 63–72 | MR | Zbl

[6] Lebedeva T. T., Sergienko T. I., “Raznye tipy ustoichivosti vektornoi zadachi tselochislennoi optimizatsii: obschii podkhod”, Kibernetika i sistemnyi analiz, 2008, no. 3, 142–148 | MR | Zbl

[7] Emelichev V. A., Gurevskii E. E., “Buleva zadacha posledovatelnoi minimizatsii modulei lineinykh funktsii i teoremy ustoichivosti”, Kibernetika i sistemnyi analiz, 2007, no. 5, 178–187 | MR | Zbl

[8] Emelichev V. A., Kuzmin K. G., “Kriterii ustoichivosti vektornykh kombinatornykh zadach “na uzkie mesta” v terminakh binarnykh otnoshenii”, Kibernetika i sistemnyi analiz, 2008, no. 3, 103–111 | MR | Zbl

[9] Emelichev V. A., Kravtsov M. K., “O kombinatornykh zadachakh vektornoi optimizatsii”, Diskretnaya matematika, 7:1 (1995), 3–18 | MR | Zbl

[10] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[11] Sotskov Yu. N., Sotskova N. Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, OIPI NAN Belarusi, Minsk, 2004

[12] Podinovskii V. V., Gavrilov V. M., Optimizatsiya po posledovatelno primenyaemym kriteriyam, Sovetskoe radio, Moskva, 1975 | MR | Zbl

[13] Emelichev V. A., Berdysheva R. A., “O radiusakh ustoichivosti, kvaziustoichivosti i stabilnosti vektornoi traektornoi zadachi leksikograficheskoi optimizatsii”, Diskretnaya matematika, 10:1 (1998), 20–27 | MR | Zbl

[14] Emelichev V. A., Berdysheva R. A., “O silnoi ustoichivosti vektornoi traektornoi zadachi leksikograficheskoi optimizatsii”, Diskretnaya matematika, 10:3 (1998), 3–9 | MR | Zbl

[15] Berdysheva R. A., Emelichev V. A., “Nekotorye vidy ustoichivosti kombinatornoi zadachi leksikograficheskoi optimizatsii”, Izvestiya vuzov. Matematika, 1998, no. 12, 11–21 | MR | Zbl

[16] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[17] Emelichev V. A., Nikulin Y. V., “Numerical measure of strong stability and strong quasi-stability in the vector problem of integer linear programming”, Comput. Sci. J. Mold., 7:1 (1999), 105–117 | MR | Zbl

[18] Gordeev E. N., “Ob ustoichivosti zadach na uzkie mesta”, Zhurnal vychisl. matem. i matem. fiziki, 33:9 (1993), 1391–1402 | MR | Zbl

[19] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurnal vychisl. matem. i matem. fiziki, 36:1 (1996), 66–72 | MR | Zbl