On the edge colouring of bipartite graphs
Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 153-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the bipartite graphs $G(X,Y,E)$ such that the degrees of vertices $y\in Y$ do not exceed $q$ and the degrees of vertices $x\in X$ are equal to $2q$, we consider the problem of existence of the edge 2-colouring such that $q$ edges of each colour are incident with each vertex $x\in X$ and the colours of edges incident with a vertex $y\in Y$ coincide.
@article{DM_2009_21_2_a11,
     author = {A. M. Magomedov},
     title = {On the edge colouring of bipartite graphs},
     journal = {Diskretnaya Matematika},
     pages = {153--158},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_2_a11/}
}
TY  - JOUR
AU  - A. M. Magomedov
TI  - On the edge colouring of bipartite graphs
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 153
EP  - 158
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_2_a11/
LA  - ru
ID  - DM_2009_21_2_a11
ER  - 
%0 Journal Article
%A A. M. Magomedov
%T On the edge colouring of bipartite graphs
%J Diskretnaya Matematika
%D 2009
%P 153-158
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_2_a11/
%G ru
%F DM_2009_21_2_a11
A. M. Magomedov. On the edge colouring of bipartite graphs. Diskretnaya Matematika, Tome 21 (2009) no. 2, pp. 153-158. http://geodesic.mathdoc.fr/item/DM_2009_21_2_a11/

[1] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, Moskva, 1982 | MR

[2] Svami M., Tkhulasiraman K., Grafy, seti i algoritmy, Mir, Moskva, 1984