Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2009_21_1_a6, author = {E. B. Yarovaya}, title = {Critical branching random walks on low-dimensional lattices}, journal = {Diskretnaya Matematika}, pages = {117--138}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/} }
E. B. Yarovaya. Critical branching random walks on low-dimensional lattices. Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 117-138. http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/
[1] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR
[2] Yarovaya E. B., “Primenenie spektralnykh metodov v izuchenii vetvyaschikhsya protsessov s diffuziei v nekompaktnom fazovom prostranstve”, Teor. matem. fiz., 88:1 (1991), 25–30 | MR | Zbl
[3] Bogachev L. V., Yarovaya E. B., “Momentnyi analiz vetvyaschegosya sluchainogo bluzhdaniya na reshetke s odnim istochnikom”, Doklady RAN, 363:4 (1998), 439–442 | MR | Zbl
[4] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | MR | Zbl
[5] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4 (2000), 41–100 | DOI | MR | Zbl
[6] Yarovaya E. B., “About limit theorems for branching symmetric random walk on $\mathbf Z^d$”, Kolmogorov and Contemporary Mathematics, MGU, Moskva, 2003, 592–593
[7] Yarovaya E. B., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbf Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 60:1 (2005), 175–176 | MR | Zbl
[8] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh-mate MGU, Moskva, 2007
[9] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walk and queuing systems with random number of independent servers”, Theory Probab. Math. Stat., 69 (2004), 1–15 | DOI | MR
[10] Vatutin V. A., Topchii V. A., “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatnostei i ee primeneniya, 49:3 (2004), 461–484 | MR | Zbl
[11] Vatutin V. A., Xiong J., “Limit theorems for a particle system of single point catalytic branching random walks”, Acta Mathematica Sinica, 23:6 (2007), 997–1012 | DOI | MR | Zbl
[12] Fleischmann K., Le Gall J., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Relat. Fields, 102 (1995), 63–82 | DOI | MR | Zbl
[13] Greven A., Klenke A., Wakolbinger A., “The long time behavior of branching random walk in a catalytic medium”, Electron. J. Probab., 4:12 (1999), 1–80 | MR
[14] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 2, Nauka, Moskva, 1973 | MR | Zbl
[15] Krasnoselskii M. A., Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, Moskva, 1966 | MR
[16] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, Moskva, 1970 | MR
[17] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, Moskva, 1984 | Zbl
[18] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, Moskva, 1985 | MR | Zbl