Critical branching random walks on low-dimensional lattices
Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 117-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider branching random walks with continuous time on integer lattices such that the particles born and die at a unique point. Under the assumption that the walk is symmetric and homogeneous, we derive integral and differential equations for the dynamics of local probabilities of continuation of the process in arbitrary nodes of the lattice, as well as probabilities of survival of the population of particles, for lattices of any dimension. In the critical case, we study the asymptotic behaviour, as $t\to\infty$, of local probabilities, probabilities of survival of the population of particles, and conditional distributions of the population size on $\mathbf Z$ and $\mathbf Z^2$.
@article{DM_2009_21_1_a6,
     author = {E. B. Yarovaya},
     title = {Critical branching random walks on low-dimensional lattices},
     journal = {Diskretnaya Matematika},
     pages = {117--138},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/}
}
TY  - JOUR
AU  - E. B. Yarovaya
TI  - Critical branching random walks on low-dimensional lattices
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 117
EP  - 138
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/
LA  - ru
ID  - DM_2009_21_1_a6
ER  - 
%0 Journal Article
%A E. B. Yarovaya
%T Critical branching random walks on low-dimensional lattices
%J Diskretnaya Matematika
%D 2009
%P 117-138
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/
%G ru
%F DM_2009_21_1_a6
E. B. Yarovaya. Critical branching random walks on low-dimensional lattices. Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 117-138. http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/

[1] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR

[2] Yarovaya E. B., “Primenenie spektralnykh metodov v izuchenii vetvyaschikhsya protsessov s diffuziei v nekompaktnom fazovom prostranstve”, Teor. matem. fiz., 88:1 (1991), 25–30 | MR | Zbl

[3] Bogachev L. V., Yarovaya E. B., “Momentnyi analiz vetvyaschegosya sluchainogo bluzhdaniya na reshetke s odnim istochnikom”, Doklady RAN, 363:4 (1998), 439–442 | MR | Zbl

[4] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | MR | Zbl

[5] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4 (2000), 41–100 | DOI | MR | Zbl

[6] Yarovaya E. B., “About limit theorems for branching symmetric random walk on $\mathbf Z^d$”, Kolmogorov and Contemporary Mathematics, MGU, Moskva, 2003, 592–593

[7] Yarovaya E. B., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbf Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 60:1 (2005), 175–176 | MR | Zbl

[8] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh-mate MGU, Moskva, 2007

[9] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walk and queuing systems with random number of independent servers”, Theory Probab. Math. Stat., 69 (2004), 1–15 | DOI | MR

[10] Vatutin V. A., Topchii V. A., “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatnostei i ee primeneniya, 49:3 (2004), 461–484 | MR | Zbl

[11] Vatutin V. A., Xiong J., “Limit theorems for a particle system of single point catalytic branching random walks”, Acta Mathematica Sinica, 23:6 (2007), 997–1012 | DOI | MR | Zbl

[12] Fleischmann K., Le Gall J., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Relat. Fields, 102 (1995), 63–82 | DOI | MR | Zbl

[13] Greven A., Klenke A., Wakolbinger A., “The long time behavior of branching random walk in a catalytic medium”, Electron. J. Probab., 4:12 (1999), 1–80 | MR

[14] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 2, Nauka, Moskva, 1973 | MR | Zbl

[15] Krasnoselskii M. A., Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, Moskva, 1966 | MR

[16] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, Moskva, 1970 | MR

[17] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, Moskva, 1984 | Zbl

[18] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, Moskva, 1985 | MR | Zbl