Critical branching random walks on low-dimensional lattices
Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 117-138

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider branching random walks with continuous time on integer lattices such that the particles born and die at a unique point. Under the assumption that the walk is symmetric and homogeneous, we derive integral and differential equations for the dynamics of local probabilities of continuation of the process in arbitrary nodes of the lattice, as well as probabilities of survival of the population of particles, for lattices of any dimension. In the critical case, we study the asymptotic behaviour, as $t\to\infty$, of local probabilities, probabilities of survival of the population of particles, and conditional distributions of the population size on $\mathbf Z$ and $\mathbf Z^2$.
@article{DM_2009_21_1_a6,
     author = {E. B. Yarovaya},
     title = {Critical branching random walks on low-dimensional lattices},
     journal = {Diskretnaya Matematika},
     pages = {117--138},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/}
}
TY  - JOUR
AU  - E. B. Yarovaya
TI  - Critical branching random walks on low-dimensional lattices
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 117
EP  - 138
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/
LA  - ru
ID  - DM_2009_21_1_a6
ER  - 
%0 Journal Article
%A E. B. Yarovaya
%T Critical branching random walks on low-dimensional lattices
%J Diskretnaya Matematika
%D 2009
%P 117-138
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/
%G ru
%F DM_2009_21_1_a6
E. B. Yarovaya. Critical branching random walks on low-dimensional lattices. Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 117-138. http://geodesic.mathdoc.fr/item/DM_2009_21_1_a6/