Identities with permutations leading to linearity of quasigroups
Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 36-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of identities with permutations of three variables in a quasigroup $(Q,\cdot)$, each of which leads to an isotopy of the quasigroup to a group (abelian group). With the use of such identities, a criterion of isotopy of a quasigroup to a group (abelian group) is formulated, and a set of identities with permutations is given which lead to a special type of linearity (alinearity) of a quasigroup over a group (abelian group). It follows from these results that in the Belousov identity, which characterises quasigroups isotopic to a group (abelian group), two out of five variables (one out of four variables) can be fixed in arbitrary way. The obtained results give a possibility to describe an infinite number of identities in a primitive quasigroup $(Q,\cdot,\backslash,/)$ leading to an isotopy of a quasigroup $(Q,\cdot)$ to a group or to its linearity of a given type.
@article{DM_2009_21_1_a1,
     author = {G. B. Belyavskaya and A. Kh. Tabarov},
     title = {Identities with permutations leading to linearity of quasigroups},
     journal = {Diskretnaya Matematika},
     pages = {36--51},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2009_21_1_a1/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
AU  - A. Kh. Tabarov
TI  - Identities with permutations leading to linearity of quasigroups
JO  - Diskretnaya Matematika
PY  - 2009
SP  - 36
EP  - 51
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2009_21_1_a1/
LA  - ru
ID  - DM_2009_21_1_a1
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%A A. Kh. Tabarov
%T Identities with permutations leading to linearity of quasigroups
%J Diskretnaya Matematika
%D 2009
%P 36-51
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2009_21_1_a1/
%G ru
%F DM_2009_21_1_a1
G. B. Belyavskaya; A. Kh. Tabarov. Identities with permutations leading to linearity of quasigroups. Diskretnaya Matematika, Tome 21 (2009) no. 1, pp. 36-51. http://geodesic.mathdoc.fr/item/DM_2009_21_1_a1/

[1] Faragó T., “Contribution to the definition of a group”, Publ. Math. Debrecen, 3 (1953), 133–137 | MR

[2] Sade A., “Entropie demosienne de multigroupoïdes et de quasigroups”, Ann. Soc. Sci. Bruxelles, 73 (1959), 302–309 | MR | Zbl

[3] Sade A., “Demosian systems of quasigroups”, Amer. Math. Monthly, 68 (1961), 329–337 | DOI | MR | Zbl

[4] Belousov V. D., “Uravnoveshennye tozhdestva v kvazigruppakh”, Matem. sbornik, 70(112):1 (1966), 55–97 | MR | Zbl

[5] Belousov V. D., “Assotsiativnye v tselom sistemy kvazigrupp”, Matem. sbornik, 55(97):2 (1961), 221–236 | MR | Zbl

[6] Aczél J., Belousov V. D., Hosszú M., “Generalized associativity and bisymmetry on quasigroups”, Acta Math. Acad. Sci. Hung., 11 (1960), 127–136 | DOI | MR | Zbl

[7] Izbash V. I., “Isomorphisms of quasigroups isotopic to groups”, Quasigroups Relat. Syst., 2 (1995), 34–50 | MR | Zbl

[8] Scherbakov V. A., “O lineinykh kvazigruppakh i ikh gruppakh avtomorfizmov”, Matem. issled., 120, 1991, 104–113

[9] Belyavskaya G. B., Tabarov A. Kh., “Kharakteristika lineinykh i alineinykh kvazigrupp”, Diskretnaya matematika, 4:2 (1992), 142–147 | MR | Zbl

[10] Kepka T., Nemec P., “$T$-quasigroups. I”, Acta Univ. Carol. Math. Phys., 12 (1971), 39–49 | MR

[11] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR | Zbl

[12] Jezek J., Kepka T., “Quasigroups isotopic to a group”, Commentat. Math. Univ. Carol., 16 (1975), 59–76 | MR | Zbl

[13] Sokhatsky F. N., “On isotopes of groups. I”, Ukrainian Math. J., 47:10 (1995), 1585–1598 | DOI | MR

[14] Sokhatsky F. N., “On isotopes of groups. II”, Ukrainian Math. J., 47:12 (1995), 1935–1948 | DOI | MR

[15] Sokhatsky F. N., “On isotopes of groups. III”, Ukrainian Math. J., 48:2 (1996), 283–293 | DOI | MR

[16] Kirnasovsky O. U., “Linear isotopes of small order groups”, Quasigroups Relat. Syst., 2 (1995), 51–82 | MR | Zbl

[17] Belyavskaya G. B., Tabarov A. Kh., “Yadra i tsentr lineinykh kvazigrupp”, Izv. AN Respubliki Moldova. Matematika, 3:6 (1991), 37–42 | MR

[18] Belyavskaya G. B., “$T$-kvazigruppy i tsentr kvazigruppy”, Matem. issled., 111, 1989, 24–43 | MR | Zbl

[19] Belyavskaya G. B., Tabarov A. H., “One-sided $T$-quasigroups and irreducible balanced identities”, Quasigroups Relat. Syst., 1 (1994), 8–21 | MR | Zbl

[20] Belousov V. D., “Kvazigruppy s vpolne sokratimymi uravnoveshennymi tozhdestvami”, Matem. issled., 83, 1985, 11–25 | MR | Zbl

[21] Tabarov A. Kh., Yadra, lineinost i uravnoveshennye tozhdestva v kvazigruppakh, Dis. $\dots$ kand. fiz.-mat. nauk, Kishinev, 1992

[22] Florya I. A., Kroitor N. N., “Ob odnom klasse kvazigrupp Bola”, Vestnik Pridnestrovskogo univ. Fiz.-mat. i tekhnich. nauki, 3 (2006), 91–95

[23] Florya I. A., “Kvazigruppy Bola”, Issledovaniya po obschei algebre, AN Moldavskoi SSR, Kishinev, 1965, 136–154