Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a~finite field
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 102-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of description of the frequency characteristics of some linear recurring sequences over a finite field. In a paper by R. McEliece, estimates of frequencies of occurrence of elements on the cycles of linear recurring sequences over a finite field with irreducible characteristic polynomial were obtained. The present paper is devoted to a generalisation of these estimates in the case of sequences of vectors with elements of several recurring sequences. The obtained results refine the known estimates of such frequencies.
@article{DM_2008_20_4_a8,
     author = {O. V. Kamlovskii},
     title = {Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a~finite field},
     journal = {Diskretnaya Matematika},
     pages = {102--112},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a8/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a~finite field
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 102
EP  - 112
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a8/
LA  - ru
ID  - DM_2008_20_4_a8
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a~finite field
%J Diskretnaya Matematika
%D 2008
%P 102-112
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a8/
%G ru
%F DM_2008_20_4_a8
O. V. Kamlovskii. Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a~finite field. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 102-112. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a8/

[1] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, Moskva, 2001

[2] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, T. 1, 2, Gelios ARV, Moskva, 2003

[3] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundamentalnaya i prikladnaya matematika, 6:4 (2000), 1083–1094 | MR | Zbl

[4] Korobov N. M., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Doklady AN SSSR, 88:4 (1953), 603–606 | MR | Zbl

[5] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR

[6] Lidl R., Niderraiter G., Konechnye polya, T. 1, 2, Mir, Moskva, 1988 | Zbl

[7] Nechaev V. I., “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Trudy MIAN, 218, Nauka, M., 1997, 335–342 | MR | Zbl

[8] Nechaev V. I., Elementy kriptografii. Osnovy teorii zaschity informatsii, Vysshaya shkola, Moskva, 1999 | MR

[9] Sidelnikov V. M., “Otsenki dlya chisla poyavlenii znakov na otrezke rekurrentnoi posledovatelnosti nad konechnym polem”, Diskretnaya matematika, 3:2 (1991), 87–95 | MR | Zbl

[10] Tsirler N., “Lineinye vozvratnye posledovatelnosti”, Kibern. sb., 6 (1963), 55–79

[11] Shparlinskii I. E., “O raspredelenii znachenii rekurrentnykh posledovatelnostei”, Problemy peredachi informatsii, 25:2 (1989), 46–53 | MR | Zbl

[12] Baumert L. D., McEliece R. J., “Weights of irreducible cyclic codes”, Inform. Control, 20 (1972), 158–175 | DOI | MR | Zbl

[13] Chou W.-S., Mullen G. L., “Generating linear spans over finite fields”, Acta Arith., 61 (1992), 183–191 | MR | Zbl

[14] Kumar P. V., Helleseth T., Calderbank A. R., “An upper bound for Weil exponential sums over Galois rings and applications”, IEEE Trans. Inform. Theory, 41 (1995), 456–468 | DOI | MR | Zbl

[15] Kuzmin A. S., Nechaev A. A., “Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring”, Discrete Appl. Math., 111 (2001), 117–137 | DOI | MR | Zbl

[16] McEliece R. J., “Irreducible cyclic codes and Gauss sums”, Combinatorics, 1975, 185–202 | MR

[17] Mullen G. L., Shparlinski I. E., “Values of linear recurring sequences of vectors over finite fields”, Acta Arith., 65 (1993), 221–226 | MR | Zbl

[18] Nelubin A. S., “Distribution of elements on cycles of linear recurrences over Galois fields”, Formal Power Series and Algebraic Combinatorics, Proc. FPSAC' 00, eds. Krob D., Mikhalev A. A., Mikhalev A. M., Springer, Berlin, 2000, 534–542 | MR | Zbl

[19] Niederreiter H., “Distribution properties of feedback shift register sequences”, Probl. Control Inf. Theory, 15 (1986), 19–34 | MR | Zbl

[20] Niederreiter H., “Weights of cyclic codes”, Inform. Control, 34 (1977), 130–140 | DOI | MR | Zbl