A lower bound for the affinity level for almost all Boolean functions
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 85-88
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the behaviour of the affinity level of the Boolean functions. It is shown that, as $n\to\infty$, almost all Boolean functions of $n$ variables have the affinity level exceeding $n-2\log_2n$.
@article{DM_2008_20_4_a6,
author = {O. A. Logachev},
title = {A lower bound for the affinity level for almost all {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {85--88},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a6/}
}
O. A. Logachev. A lower bound for the affinity level for almost all Boolean functions. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 85-88. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a6/