Independent systems of generators and the Hopf property for unary algebras
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 79-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of an independent set of elements of a unary algebra as a subset of its support, where in any pair of elements one element does not belong to the subalgebra generated by the other. It is proved that any two independent systems of generators of a unary algebra have the same cardinality. With the use of this assertion it is proved that any finitely generated unary algebra with commutative operations possesses the Hopf property: each epiendomorphism of the algebra is an automorphism.
@article{DM_2008_20_4_a5,
     author = {V. K. Kartashov},
     title = {Independent systems of generators and the {Hopf} property for unary algebras},
     journal = {Diskretnaya Matematika},
     pages = {79--84},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a5/}
}
TY  - JOUR
AU  - V. K. Kartashov
TI  - Independent systems of generators and the Hopf property for unary algebras
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 79
EP  - 84
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a5/
LA  - ru
ID  - DM_2008_20_4_a5
ER  - 
%0 Journal Article
%A V. K. Kartashov
%T Independent systems of generators and the Hopf property for unary algebras
%J Diskretnaya Matematika
%D 2008
%P 79-84
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a5/
%G ru
%F DM_2008_20_4_a5
V. K. Kartashov. Independent systems of generators and the Hopf property for unary algebras. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 79-84. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a5/

[1] Kartashov V. K., “Lemma o zamene i svoistvo Khopfa dlya unarnykh algebr”, Tezisy dokladov Mezhdunarodnoi algebraicheskoi konferentsii, posvyaschennoi 250-letiyu Moskovskogo universiteta, 2004, 64–65

[2] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Fizmatlit, Moskva, 1997 | MR | Zbl

[3] Neiman Kh., Mnogoobraziya grupp, Mir, Moskva, 1969 | MR