On ranks, Green classes, and the theory of determinants of Boolean matrices
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 42-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the groupoid of all possible matrices over an arbitrary Boolean algebra with partial operation of matrix product. On this groupoid, we define the equivalence classes analogous to the Green classes $H,C,R,D,J$ for semigroups. We introduce the notion of the minor rank of a Boolean matrix. We show that the column, row, factorisation and minor ranks are invariants for the $J$-class of this groupoid, and the minor ranks do not exceed the column, row, factorisation and permanent ranks. The key result of this work explains the role of the Boolean determinant. We show that in some $J$-class there exists a square $n\times n$ matrix with nonzero determinant if and only if the column, row, factorisation and minor ranks of any matrix of this class are equal to each other and equal to $n$. All $n\times n$ matrices of this $J$-class have equal determinants, while the determinants of the square matrices of greater size are equal to zero.
@article{DM_2008_20_4_a3,
     author = {V. B. Poplavskii},
     title = {On ranks, {Green} classes, and the theory of determinants of {Boolean} matrices},
     journal = {Diskretnaya Matematika},
     pages = {42--60},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a3/}
}
TY  - JOUR
AU  - V. B. Poplavskii
TI  - On ranks, Green classes, and the theory of determinants of Boolean matrices
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 42
EP  - 60
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a3/
LA  - ru
ID  - DM_2008_20_4_a3
ER  - 
%0 Journal Article
%A V. B. Poplavskii
%T On ranks, Green classes, and the theory of determinants of Boolean matrices
%J Diskretnaya Matematika
%D 2008
%P 42-60
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a3/
%G ru
%F DM_2008_20_4_a3
V. B. Poplavskii. On ranks, Green classes, and the theory of determinants of Boolean matrices. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 42-60. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a3/

[1] Sokolov O. B., “Primenenie bulevykh opredelitelei k analizu logicheskikh mnogopolyusnikov”, Uchenye zapiski Kazanskogo gosuniversiteta, 123:6 (1963), 155–164 | MR

[2] Chesley D. S., Bevis J. H., “Determinants for matrices over lattices”, Proc. Royal Soc. Edinburgh, 68 (1969), 138–144 | MR | Zbl

[3] Reutenauer C., Straubing H., “Inversion of matrices over a commutative semiring”, J. Algebra, 88 (1984), 350–360 | DOI | MR | Zbl

[4] Poplin P. L., Hartwig R. E., “Determinantal identities over commutative semirings”, Linear Algebra Appl., 387 (2004), 99–132 | DOI | MR | Zbl

[5] Poplavskii V. B., “O razlozhenii opredelitelei bulevykh matrits”, Fundamentalnaya i prikladnaya matematika, 13:4 (2007), 199–223 | MR

[6] Poplavski V., “On orientability and degeneration of Boolean binary relation on a finite set”, Math. Logic in Asia, Proc. 9th Asian Logic Conf., World Scientific, Singapore, 2006, 203–214 | MR | Zbl

[7] Poplavskii V. B., “Opredeliteli stepenei bulevykh matrits”, Chebyshevskii sbornik, 5:3(11) (2004), 98–111 | MR | Zbl

[8] Poplavskii V. B., “Ob'emy i opredeliteli stepenei tranzitivnykh i refleksivnykh bulevykh otnoshenii na konechnykh mnozhestvakh”, Izvestiya Tulskogo gosuniversiteta. Seriya Matematika. Mekhanika. Informatika, 10:1 (2004), 134–141 | MR

[9] Poplavskii V. B., “Orientirovannye opredeliteli proizvedeniya bulevykh matrits”, Matematika. Mekhanika, 6, Izd-vo Saratovskogo univ., 2004, 111–114

[10] Beasley L. B., Guterman A. E., “Rank inequalities over semirings”, J. Korean Math. Soc., 42 (2005), 223–241 | MR | Zbl

[11] Pshenitsina O. A., “Faktorizatsionnyi i granichnyi rang matrichnogo ob'edineniya nad polukoltsom”, Fundamentalnaya i prikladnaya matematika, 9:3 (2003), 175–197 | MR | Zbl

[12] Bisli L. B., Guterman A. E., Ii S.-Ch., “LP-problemy dlya rangovykh neravenstv nad polukoltsami: granichnye rangi”, Fundamentalnaya i prikladnaya matematika, 10:2 (2004), 3–21 | MR | Zbl

[13] Song Seok-Zun, Lee Sang-Gu, “Column ranks and their preservers of general Boolean matrices”, J. Korean Math. Soc., 32 (1995), 531–540 | MR | Zbl

[14] Kim Ki Hang, Boolean matrix theory and applications, Marcel Dekker, New York, 1982 | MR | Zbl

[15] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1, Mir, Moskva, 1985

[16] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, Moskva, 1985 | MR

[17] Golan J. S., Semirings and their applications, Kluwer, Dordrecht, 1999 | MR

[18] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, Moskva, 2000 | MR | Zbl

[19] Mink Kh., Permanenty, Mir, Moskva, 1982 | MR