Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2008_20_4_a12, author = {A. N. Cherepov}, title = {Estimates of the complexity of approximation of continuous functions in some classes of determinate functions with delay}, journal = {Diskretnaya Matematika}, pages = {147--156}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a12/} }
TY - JOUR AU - A. N. Cherepov TI - Estimates of the complexity of approximation of continuous functions in some classes of determinate functions with delay JO - Diskretnaya Matematika PY - 2008 SP - 147 EP - 156 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a12/ LA - ru ID - DM_2008_20_4_a12 ER -
%0 Journal Article %A A. N. Cherepov %T Estimates of the complexity of approximation of continuous functions in some classes of determinate functions with delay %J Diskretnaya Matematika %D 2008 %P 147-156 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a12/ %G ru %F DM_2008_20_4_a12
A. N. Cherepov. Estimates of the complexity of approximation of continuous functions in some classes of determinate functions with delay. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 147-156. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a12/
[1] Vitushkin A. G., Otsenka slozhnosti zadachi tabulyatsii, Fizmatgiz, Moskva, 1959
[2] Gashkov S. B., “O slozhnosti priblizhennoi realizatsii nepreryvnykh funktsii skhemami i formulami v polinomialnykh i nekotorykh drugikh bazisakh”, Matem. voprosy kibernetiki, 5 (1994), 144–207 | MR | Zbl
[3] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, Mir, Moskva, 1998
[4] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR | Zbl
[5] Ofman Yu. P., “O priblizhennoi realizatsii nepreryvnykh funktsii na avtomatakh”, Doklady AN SSSR, 152:4 (1963), 823–825 | MR
[6] Tyulenev N. F., “Priblizhenie nepreryvnykh funktsii diskretnymi”, Sbornik trudov seminara po diskretnoi matematike i ee prilozheniyam, Mekh.-mat. f-t MGU, Moskva, 1997, 148–151
[7] Tyulenev N. F., “O priblizhenii nepreryvnykh funktsii diskretnymi”, Konstruktsii v algebre i logike, Tverskoi gosuniv., Tver, 1990, 110–116 | MR
[8] Cherepov I. A., “O priblizhenii nepreryvnykh funktsii determinirovannymi funktsiyami s zaderzhkoi”, Sbornik trudov seminara po diskretnoi matematike i ee prilozheniyam, Mekh.-mat. f-t MGU, Moskva, 2004, 163–166
[9] Cherepov A. N., Cherepov I. A., “O klassifikatsii nedeterminirovannykh funktsii”, Sbornik trudov seminara po diskretnoi matematike i ee prilozheniyam, Mekh.-mat. f-t MGU, Moskva, 2004, 160–163
[10] Cherepov A. N., “O slozhnosti priblizheniya nepreryvnykh funktsii nedeterminirovannymi funktsiyami s zaderzhkoi”, Materialy IX Mezhdunarodnoi konferentsii “Intellektualnye sistemy i kompyuternye nauki”, T. 1(2), Mekh.-mat. f-t MGU, Moskva, 2006, 307–310
[11] Cherepov A. N., “Otsenki slozhnosti priblizheniya nepreryvnykh funktsii nekotorykh klassov determinirovannymi funktsiyami s zaderzhkoi”, Materialy XVI Mezhdunarodnoi shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem”, Mekh.-mat. f-t MGU, Moskva, 2006, 118–122