On design of circuits of logarithmic depth for inversion in finite fields
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 8-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a method of realisation of inversion over the standard bases of finite fields $GF(p^n)$ by means of circuits over $GF(p)$ of complexity $O(\varepsilon^{-1}n^{w+\varepsilon})$ and depth $O(\varepsilon^{-1}\log n)$, where $\varepsilon>0$, and $w1.667$ is the exponent of multiplication of $\sqrt n\times\sqrt n$ and $\sqrt n\times n$ matrices. Inversion over Gaussian normal bases is realised by a circuit of complexity $O(\varepsilon^{-b}n^{1+c\varepsilon|\log\varepsilon|})$ and depth $O(\varepsilon^{-1}\log n)$, where $b,c$ are constants.
@article{DM_2008_20_4_a1,
     author = {S. B. Gashkov and I. S. Sergeev},
     title = {On design of circuits of logarithmic depth for inversion in finite fields},
     journal = {Diskretnaya Matematika},
     pages = {8--28},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a1/}
}
TY  - JOUR
AU  - S. B. Gashkov
AU  - I. S. Sergeev
TI  - On design of circuits of logarithmic depth for inversion in finite fields
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 8
EP  - 28
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a1/
LA  - ru
ID  - DM_2008_20_4_a1
ER  - 
%0 Journal Article
%A S. B. Gashkov
%A I. S. Sergeev
%T On design of circuits of logarithmic depth for inversion in finite fields
%J Diskretnaya Matematika
%D 2008
%P 8-28
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a1/
%G ru
%F DM_2008_20_4_a1
S. B. Gashkov; I. S. Sergeev. On design of circuits of logarithmic depth for inversion in finite fields. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 8-28. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a1/