On stability of a~vector combinatorial problem with MINMIN criteria
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria combinatorial problem with minmin criteria. For the stability of the problem we obtain a necessary and sufficient condition which is a discrete analogue of the Hausdorff upper semicontinuity of a multivalued mapping which puts each set of parameters of the vector criterion into correspondence with the Pareto set of the problem.
@article{DM_2008_20_4_a0,
     author = {V. A. Emelichev and K. G. Kuz'min},
     title = {On stability of a~vector combinatorial problem with {MINMIN} criteria},
     journal = {Diskretnaya Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
TI  - On stability of a~vector combinatorial problem with MINMIN criteria
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 3
EP  - 7
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/
LA  - ru
ID  - DM_2008_20_4_a0
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%T On stability of a~vector combinatorial problem with MINMIN criteria
%J Diskretnaya Matematika
%D 2008
%P 3-7
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/
%G ru
%F DM_2008_20_4_a0
V. A. Emelichev; K. G. Kuz'min. On stability of a~vector combinatorial problem with MINMIN criteria. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/

[1] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, Moskva, 1982 | MR | Zbl

[2] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurnal vychisl. matem. i matem. fiziki, 36:1 (1996), 66–72 | MR | Zbl

[3] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58 (1995), 169–190 | DOI | MR | Zbl

[4] Sotskov Yu. N., Sotskova N. Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, OIPI NAN Belarusi, Minsk, 2004

[5] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Naukova dumka, Kiev, 2003

[6] Girlikh E., Kovalev M. M., Kravtsov M. K., “Stabilnost, ustoichivost i kvaziustoichivost mnogokriterialnoi zadachi na sisteme podmnozhestv”, Kibernetika i sistemnyi analiz, 1999, no. 5, 111–124 | MR

[7] Emelichev V. A., Kravtsov M. K., “Ob ustoichivosti v traektornykh zadachakh vektornoi optimizatsii”, Kibernetika i sistemnyi analiz, 1995, no. 4, 137–143 | MR | Zbl

[8] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51 (2002), 645–676 | DOI | MR | Zbl

[9] Emelichev V. A., Krichko V. N., “Formula radiusa ustoichivosti vektornoi $l_\infty$-ekstremalnoi traektornoi zadachi”, Diskretnaya matematika, 16:1 (2004), 14–20 | MR | Zbl