On stability of a~vector combinatorial problem with MINMIN criteria
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 3-7
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multicriteria combinatorial problem with minmin criteria. For the stability of the problem we obtain a necessary and sufficient condition which is a discrete analogue of the Hausdorff upper semicontinuity of a multivalued mapping which puts each set of parameters of the vector criterion into correspondence with the Pareto set of the problem.
@article{DM_2008_20_4_a0,
author = {V. A. Emelichev and K. G. Kuz'min},
title = {On stability of a~vector combinatorial problem with {MINMIN} criteria},
journal = {Diskretnaya Matematika},
pages = {3--7},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/}
}
V. A. Emelichev; K. G. Kuz'min. On stability of a~vector combinatorial problem with MINMIN criteria. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/