On stability of a~vector combinatorial problem with MINMIN criteria
Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria combinatorial problem with minmin criteria. For the stability of the problem we obtain a necessary and sufficient condition which is a discrete analogue of the Hausdorff upper semicontinuity of a multivalued mapping which puts each set of parameters of the vector criterion into correspondence with the Pareto set of the problem.
@article{DM_2008_20_4_a0,
     author = {V. A. Emelichev and K. G. Kuz'min},
     title = {On stability of a~vector combinatorial problem with {MINMIN} criteria},
     journal = {Diskretnaya Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
TI  - On stability of a~vector combinatorial problem with MINMIN criteria
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 3
EP  - 7
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/
LA  - ru
ID  - DM_2008_20_4_a0
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%T On stability of a~vector combinatorial problem with MINMIN criteria
%J Diskretnaya Matematika
%D 2008
%P 3-7
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/
%G ru
%F DM_2008_20_4_a0
V. A. Emelichev; K. G. Kuz'min. On stability of a~vector combinatorial problem with MINMIN criteria. Diskretnaya Matematika, Tome 20 (2008) no. 4, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_2008_20_4_a0/