Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2008_20_3_a4, author = {V. A. Voblyi}, title = {A simple upper bound for the number of spanning trees of regular graphs}, journal = {Diskretnaya Matematika}, pages = {47--50}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/} }
V. A. Voblyi. A simple upper bound for the number of spanning trees of regular graphs. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 47-50. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/
[1] Myrvold W., “Reliable network synthesis: some recent developments”, Proc. 8th Intern. Conf. on Graph Theory, Combinatorics, Algorithms and Applications, Vol. 2, 1999, 650–660 | MR
[2] Brown T. J. N., Mallion R. B., Pollak P., Roth A., “Some methods for counting in labelled molecular graphs, examined in relation to certain fullerenes”, Discrete Appl. Math., 67 (1996), 51–66 | DOI | MR | Zbl
[3] Biggs N., Algebraic graph theory, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[4] McKay B. D., “Spanning trees in regular graphs”, Europ. J. Combin., 4 (1983), 149–160 | MR | Zbl
[5] Fan Chung, Yau S.-T., “Coverings, heat kernels and spanning trees”, Electronic J. Combin., 6(1) (1999), R12 | MR | Zbl
[6] Lyons R., “Asymptotic enumeration of spanning trees”, Combinatorics, Probability, Computing, 14 (2005), 491–552 | DOI | MR
[7] Tsvetkovich D., Dub M., Zakhs Kh., Spektry grafov. Teoriya i primenenie, Naukova dumka, Kiev, 1984 | MR
[8] Harary F., Manvel B., “On the number of cycles in graph”, Matematicky Ĉasopis, 21 (1971), 55–63 | MR | Zbl