A simple upper bound for the number of spanning trees of regular graphs
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 47-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper bound for the number of spanning trees of regular graphs of degree $k$ which is in a sense asymptotically exact as $k\to\infty$.
@article{DM_2008_20_3_a4,
     author = {V. A. Voblyi},
     title = {A simple upper bound for the number of spanning trees of regular graphs},
     journal = {Diskretnaya Matematika},
     pages = {47--50},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - A simple upper bound for the number of spanning trees of regular graphs
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 47
EP  - 50
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/
LA  - ru
ID  - DM_2008_20_3_a4
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T A simple upper bound for the number of spanning trees of regular graphs
%J Diskretnaya Matematika
%D 2008
%P 47-50
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/
%G ru
%F DM_2008_20_3_a4
V. A. Voblyi. A simple upper bound for the number of spanning trees of regular graphs. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 47-50. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/