A simple upper bound for the number of spanning trees of regular graphs
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 47-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper bound for the number of spanning trees of regular graphs of degree $k$ which is in a sense asymptotically exact as $k\to\infty$.
@article{DM_2008_20_3_a4,
     author = {V. A. Voblyi},
     title = {A simple upper bound for the number of spanning trees of regular graphs},
     journal = {Diskretnaya Matematika},
     pages = {47--50},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - A simple upper bound for the number of spanning trees of regular graphs
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 47
EP  - 50
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/
LA  - ru
ID  - DM_2008_20_3_a4
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T A simple upper bound for the number of spanning trees of regular graphs
%J Diskretnaya Matematika
%D 2008
%P 47-50
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/
%G ru
%F DM_2008_20_3_a4
V. A. Voblyi. A simple upper bound for the number of spanning trees of regular graphs. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 47-50. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a4/

[1] Myrvold W., “Reliable network synthesis: some recent developments”, Proc. 8th Intern. Conf. on Graph Theory, Combinatorics, Algorithms and Applications, Vol. 2, 1999, 650–660 | MR

[2] Brown T. J. N., Mallion R. B., Pollak P., Roth A., “Some methods for counting in labelled molecular graphs, examined in relation to certain fullerenes”, Discrete Appl. Math., 67 (1996), 51–66 | DOI | MR | Zbl

[3] Biggs N., Algebraic graph theory, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[4] McKay B. D., “Spanning trees in regular graphs”, Europ. J. Combin., 4 (1983), 149–160 | MR | Zbl

[5] Fan Chung, Yau S.-T., “Coverings, heat kernels and spanning trees”, Electronic J. Combin., 6(1) (1999), R12 | MR | Zbl

[6] Lyons R., “Asymptotic enumeration of spanning trees”, Combinatorics, Probability, Computing, 14 (2005), 491–552 | DOI | MR

[7] Tsvetkovich D., Dub M., Zakhs Kh., Spektry grafov. Teoriya i primenenie, Naukova dumka, Kiev, 1984 | MR

[8] Harary F., Manvel B., “On the number of cycles in graph”, Matematicky Ĉasopis, 21 (1971), 55–63 | MR | Zbl