Random graphs of Internet type and the generalised allocation scheme
Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to simulate complex telecommunication networks, in particular, the Internet, random graphs are frequently used which contain $N$ vertices whose degrees are independent random variables distributed by the law $$ \mathbf P\{\eta\ge k\}= k^{-\tau},$$ where $\eta$ is the vertex degree, $\tau>0$, $k=1,2,\dots$, and the graphs with identical degrees of all vertices are equiprobable. In this paper we consider the set of these graphs under the condition that the sum of degrees is equal to $n$. We show that the generalised scheme of allocating particles into cells can be used to investigate the asymptotic behaviour of these graphs. For $N,n\to\infty$ in such a way that $1$, where $\zeta(\tau)$ is the value of the Riemann zeta function at the point $\tau$, we obtain limit distributions of the maximum degree and the number of vertices of a given degree.
@article{DM_2008_20_3_a0,
     author = {Yu. L. Pavlov and I. A. Cheplyukova},
     title = {Random graphs of {Internet} type and the generalised allocation scheme},
     journal = {Diskretnaya Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_3_a0/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
AU  - I. A. Cheplyukova
TI  - Random graphs of Internet type and the generalised allocation scheme
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 3
EP  - 18
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_3_a0/
LA  - ru
ID  - DM_2008_20_3_a0
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%A I. A. Cheplyukova
%T Random graphs of Internet type and the generalised allocation scheme
%J Diskretnaya Matematika
%D 2008
%P 3-18
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_3_a0/
%G ru
%F DM_2008_20_3_a0
Yu. L. Pavlov; I. A. Cheplyukova. Random graphs of Internet type and the generalised allocation scheme. Diskretnaya Matematika, Tome 20 (2008) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/DM_2008_20_3_a0/

[1] Faloutsos C., Faloutsos P., Faloutsos M., “On power-law relationships of the internet topology”, Computer Communications Rev., 29 (1999), 251–252 | DOI

[2] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evaluation, 55 (2004), 3–23 | DOI

[3] Newman M. E. J., Strogatz S. H., Watts D. J., “Random graphs with arbitrary degree distribution and their applications”, Phys. Rev. E, 64 (2001), 026118 | DOI

[4] Janson S., Luczak T., Ruciński A., Random graphs, Wiley, New York, 2000 | MR

[5] Pavlov Yu. L., “Predelnoe raspredelenie ob'ema gigantskoi komponenty v sluchainom grafe Internet-tipa”, Diskretnaya matematika, 19:3 (2007), 22–34 | MR | Zbl

[6] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR | Zbl

[7] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl

[8] Wood D., Techn. Rep. 15–20, Univ. Kent, 1992

[9] Mukhin A. B., “Lokalnye predelnye teoremy dlya reshetchatykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 36:4 (1991), 660–674 | MR | Zbl

[10] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 15:4 (2003), 148–157 | MR | Zbl

[11] Kolchin A. V., Kolchin V. F., “O perekhode raspredelenii summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin s odnoi reshetki na druguyu v obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 18:4 (2006), 113–127 | MR | Zbl