On enumeration of labelled connected graphs by the number of cutpoints
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 52-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the numbers $S_{mn}$ of labelled connected graphs with $n$ vertices among which $m$ are cutpoints. We obtain an explicit expression for the exponential generating function $S_m(z)$ of these numbers and find the asymptotics of the numbers $S_{mn}$ as $n\to\infty$ and $m=o(n)$.
@article{DM_2008_20_1_a3,
     author = {V. A. Voblyi},
     title = {On enumeration of labelled connected graphs by the number of cutpoints},
     journal = {Diskretnaya Matematika},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a3/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On enumeration of labelled connected graphs by the number of cutpoints
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 52
EP  - 63
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a3/
LA  - ru
ID  - DM_2008_20_1_a3
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On enumeration of labelled connected graphs by the number of cutpoints
%J Diskretnaya Matematika
%D 2008
%P 52-63
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a3/
%G ru
%F DM_2008_20_1_a3
V. A. Voblyi. On enumeration of labelled connected graphs by the number of cutpoints. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a3/

[1] Selkow S. M., “The enumeration of labeled graphs by number of cutpoints”, Discrete Math., 185 (1998), 183–191 | DOI | MR | Zbl

[2] Ying-Lie Jin, “Enumeration of labeled connected graphs and Euler graphs with only one cut vertex”, Yokohama Math. J., 45 (1998), 125–134 | MR | Zbl

[3] Ling-Ling Yang, Song-Chen Li, “Enumeration of special kind of labeled connected graphs”, Trans. Tianjin Univ., 10 (2004), 233–235

[4] Wright E. M., “A relationship between two sequences”, Proc. London Math. Soc., 17 (1967), 296–304 | DOI | MR | Zbl

[5] Wright E. M., “The number of connected sparsely edged graphs. II: Smooth graphs and blocks”, J. Graph Theory, 2 (1978), 299–305 | DOI | MR | Zbl

[6] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in the theory of graphs. I”, Proc. Natl. Acad. Sci. USA, 42 (1956), 122–128 | DOI | MR | Zbl

[7] Bagaev G. N., “K perechisleniyu svyaznykh gipergrafov”, Kombinatornyi analiz, 5 (1980), 59–61 | MR | Zbl

[8] Dyikanov S. K., “Perechislitelnye zadachi gipergrafov”, Kombinatornyi analiz, 5 (1980), 62–65 | MR | Zbl

[9] Lyamin V. N., Selivanov B. I., “Giperderevya s zadannym chislom kontsevykh vershin i reber”, Kombinatornyi analiz, 3 (1974), 68–71

[10] Riordan Dzh., Kombinatornye tozhdestva, Nauka, Moskva, 1982 | MR | Zbl

[11] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, Moskva, 1963

[12] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, Moskva, 2004

[13] Egorychev G. P., Integralnye preobrazovaniya i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 | Zbl

[14] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, Moskva, 1983 | MR