Some characteristics of dependencies in discrete random sequences
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 151-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some $\chi^2$-type statistics used to find dependencies between random variables in a sequence under study, we obtain limit theorems in the case where the sample size tends to infinity.
@article{DM_2008_20_1_a13,
     author = {M. I. Tikhomirova},
     title = {Some characteristics of dependencies in discrete random sequences},
     journal = {Diskretnaya Matematika},
     pages = {151--158},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a13/}
}
TY  - JOUR
AU  - M. I. Tikhomirova
TI  - Some characteristics of dependencies in discrete random sequences
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 151
EP  - 158
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a13/
LA  - ru
ID  - DM_2008_20_1_a13
ER  - 
%0 Journal Article
%A M. I. Tikhomirova
%T Some characteristics of dependencies in discrete random sequences
%J Diskretnaya Matematika
%D 2008
%P 151-158
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a13/
%G ru
%F DM_2008_20_1_a13
M. I. Tikhomirova. Some characteristics of dependencies in discrete random sequences. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 151-158. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a13/

[1] Selivanov B. I., Chistyakov V. P., “Posledovatelnyi $\chi^2$-kriterii, postroennyi po $s$-tsepochkam sostoyanii tsepi Markova”, Diskretnaya matematika, 9:4 (1997), 127–136 | MR | Zbl

[2] Tikhomirova M. I., Chistyakov V. P., “O nekotorykh statistikakh tipa $\chi^2$, funktsionalno zavisyaschikh ot otsenok neizvestnykh parametrov”, Diskretnaya matematika, 17:1 (2005), 22–34 | MR | Zbl

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, Moskva, 1984 | Zbl

[4] Dik J. J., de Gunst M. C. M., “The distribution of general quadratic form in normal variables”, Stat. Neerl., 39:1 (1985), 14–26 | DOI | MR | Zbl