On complexity of realisation of a~class of almost symmetric functions by formulas of depth~3
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 120-130
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class of almost symmetric Boolean functions. For any function of this class, the values on all tiers except the second one coincide with the values of a monotone symmetric function with threshold 3. The values on the second tier are arbitrary. We study realisation of functions of this class by $\\vee\$- formulas over the basis $\{\,\vee\}$.
We obtain a sharp bound for the minimum complexity of the functions of this class (the function of minimum complexity is explicitly written out) and an asymptotic estimate of complexity of a monotone symmetric function with threshold 3 which is maximal in order of complexity in the class under consideration.
@article{DM_2008_20_1_a10,
author = {S. E. Cherukhina},
title = {On complexity of realisation of a~class of almost symmetric functions by formulas of depth~3},
journal = {Diskretnaya Matematika},
pages = {120--130},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a10/}
}
TY - JOUR AU - S. E. Cherukhina TI - On complexity of realisation of a~class of almost symmetric functions by formulas of depth~3 JO - Diskretnaya Matematika PY - 2008 SP - 120 EP - 130 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a10/ LA - ru ID - DM_2008_20_1_a10 ER -
S. E. Cherukhina. On complexity of realisation of a~class of almost symmetric functions by formulas of depth~3. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 120-130. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a10/