Random polynomials over a~finite field
Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider monic (with higher coefficient 1) polynomials of fixed degree $n$ over an arbitrary finite field $GF(q)$, where $q\ge2$ is a prime number or a power of a prime number. It is assumed that on the set $\mathscr F_n=\{f_n\}$ of all $q^n$ such polynomials the uniform measure is defined which assigns the probability $q^{-n}$ to each polynomial. For an arbitrary polynomial $f_n\in\mathscr F_n$, its local structure $\mathscr K_n=\mathscr K(f_n)$ is defined as the set of multiplicities of all irreducible factors in the canonical decomposition of $f_n$, and various structural characteristics of a polynomial (its exact and asymptotic as $n\to\infty$ distributions) which are functionals of $\mathscr K_n$ are studied. Directions of possible further research are suggested.
@article{DM_2008_20_1_a0,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Random polynomials over a~finite field},
     journal = {Diskretnaya Matematika},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2008_20_1_a0/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Random polynomials over a~finite field
JO  - Diskretnaya Matematika
PY  - 2008
SP  - 3
EP  - 24
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2008_20_1_a0/
LA  - ru
ID  - DM_2008_20_1_a0
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Random polynomials over a~finite field
%J Diskretnaya Matematika
%D 2008
%P 3-24
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2008_20_1_a0/
%G ru
%F DM_2008_20_1_a0
G. I. Ivchenko; Yu. I. Medvedev. Random polynomials over a~finite field. Diskretnaya Matematika, Tome 20 (2008) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/DM_2008_20_1_a0/

[1] Odlyzko A. M., “Discrete logarithms in finite fields and their cryptographic significance”, Lect. Notes Computer Sci., 209 (1985), 224–314 | DOI | MR | Zbl

[2] Flajolet P., Soria M., “Gaussian limiting distributions for the number of components in combinatorial structures”, J. Comb. Theory Ser. A, 53:2 (1990), 165–182 | DOI | MR | Zbl

[3] Hansen J. C., “Factorization in $F_q[x]$ and Brownian motion”, Comb. Probab. Comput., 2:2 (1993), 285–299 | MR | Zbl

[4] Arratia R., Barbour A. D., Tavare S., “On random polynomials over finite fields”, Math. Proc. Cambridge Phil. Soc., 114:2 (1993), 347–368 | DOI | MR | Zbl

[5] Ivchenko G. I., Medvedev Yu. I., “Sluchainye mnogochleny nad konechnym polem”, Teoriya veroyatnostei i ee primeneniya, 41:1 (1996), 204–210 | MR | Zbl

[6] Ivchenko G. I., Medvedev Yu. I., “O strukture sluchainykh mnogochlenov nad konechnymi polyami”, Trudy po diskretnoi matematike, 3, 2000, 111–138

[7] Ivchenko G. I., Medvedev Yu. I., “Ekstremalnye kharakteristiki sluchainogo mnogochlena nad konechnym polem”, Trudy po diskretnoi matematike, 4, 2001, 71–82

[8] Ivchenko G. I., Medvedev Yu. I., “Neravnoveroyatnye mery na mnozhestvakh razlozhimykh kombinatornykh ob'ektov”, Obozrenie prikladnoi i promyshlennoi matematiki, 10:2 (2003), 348–349

[9] Ivchenko G. I., Medvedev Yu. I., “Sluchainye kombinatornye ob'ekty”, Dokl. RAN, 396:2 (2004), 151–154 | MR | Zbl

[10] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR | Zbl

[11] Lidl R., Niderraiter G., Konechnye polya, T. 1, Mir, Moskva, 1988 | Zbl

[12] Ivchenko G. I., Medvedev Yu. I., “Local structure of random polynomials over finite fields”, Probab. Methods in Discrete Math., VSP, Utrecht, 2001, 27–46