On identical transformations in commutative semigroups
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 139-149
It is proved that in any commutative semigroup the complexity of transformation of equal terms of length at most $n$ into each other is of order $n\log n$.
@article{DM_2007_19_4_a9,
author = {D. M. Motin},
title = {On identical transformations in commutative semigroups},
journal = {Diskretnaya Matematika},
pages = {139--149},
year = {2007},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a9/}
}
D. M. Motin. On identical transformations in commutative semigroups. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 139-149. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a9/
[1] Perkins P., “Bazisy dlya ekvatsionalnykh teorii polugrupp”, Kibern. sb., 11 (1974), 14–17
[2] Lyndon R. C., “Identities in two-valued calculi”, Trans. Amer. Math. Soc., 71:3 (1951), 457–465 | DOI | MR | Zbl
[3] Yablonskii S. V., Gavrilov G. P., Kudryavtsev V. B., Funktsii algebry logiki i klassy Posta, Nauka, Moskva, 1966 | MR | Zbl