Generalised Pascal pyramids and their reciprocals
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 108-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct pairs of reciprocal relations which contain as the coefficients three-index combinatorial numbers. We introduce three-index generalisations of a series of known combinatorial numbers.
@article{DM_2007_19_4_a6,
     author = {A. A. Balagura and O. V. Kuz'min},
     title = {Generalised {Pascal} pyramids and their reciprocals},
     journal = {Diskretnaya Matematika},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a6/}
}
TY  - JOUR
AU  - A. A. Balagura
AU  - O. V. Kuz'min
TI  - Generalised Pascal pyramids and their reciprocals
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 108
EP  - 116
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_4_a6/
LA  - ru
ID  - DM_2007_19_4_a6
ER  - 
%0 Journal Article
%A A. A. Balagura
%A O. V. Kuz'min
%T Generalised Pascal pyramids and their reciprocals
%J Diskretnaya Matematika
%D 2007
%P 108-116
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_4_a6/
%G ru
%F DM_2007_19_4_a6
A. A. Balagura; O. V. Kuz'min. Generalised Pascal pyramids and their reciprocals. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 108-116. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a6/

[1] Kuzmin O. V., Obobschennye piramidy Paskalya i ikh prilozheniya, Nauka, Novosibirsk, 2000 | MR

[2] Platonov M. L., Kombinatornye chisla klassa otobrazhenii i ikh prilozheniya, Nauka, Moskva, 1979 | MR