Properties of the output sequence of a~simplest 2-linear shift register over~$\mathbf Z_{2^n}$
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 70-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The output sequence of a simplest self-controlled 2-linear shift register over the residue ring $R=\mathbf Z_{2^n}$ is considered. For a fixed output function we study the rank and the period of the output sequence. In some special cases frequency characteristics of cycles of the first coordinate sequence of the output sequence are considered. It is shown that the rank of the output sequence of the 2-dimensional shift register is much greater than the rank of the output sequence of a 1-dimensional register of the same length.
@article{DM_2007_19_4_a4,
     author = {O. A. Kozlitin},
     title = {Properties of the output sequence of a~simplest 2-linear shift register over~$\mathbf Z_{2^n}$},
     journal = {Diskretnaya Matematika},
     pages = {70--96},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a4/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - Properties of the output sequence of a~simplest 2-linear shift register over~$\mathbf Z_{2^n}$
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 70
EP  - 96
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_4_a4/
LA  - ru
ID  - DM_2007_19_4_a4
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T Properties of the output sequence of a~simplest 2-linear shift register over~$\mathbf Z_{2^n}$
%J Diskretnaya Matematika
%D 2007
%P 70-96
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_4_a4/
%G ru
%F DM_2007_19_4_a4
O. A. Kozlitin. Properties of the output sequence of a~simplest 2-linear shift register over~$\mathbf Z_{2^n}$. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 70-96. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a4/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Gelios-ARV, Moskva, 2003

[2] Kozlitin O. A., “Periodicheskie svoistva prosteishego 2-lineinogo registra sdviga”, Diskretnaya matematika, 19:3 (2007), 51–78 | MR

[3] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR

[4] Kurakin V. L., “Polinomialnye preobrazovaniya lineinykh rekurrentnykh posledovatelnostei nad konechnymi kommutativnymi koltsami”, Diskretnaya matematika, 12:3 (2000), 3–36 | MR | Zbl

[5] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl

[6] Nechaev A. A., “O podobii matrits nad kommutativnym lokalnym artinovym koltsom”, Trudy seminara im. I. G. Petrovskogo, 9 (1983), 81–101 | Zbl

[7] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sb., 184:3 (1993), 21–56 | MR | Zbl

[8] Fomichev V. M., Diskretnaya matematika i kriptologiya, Dialog–MIFI, Moskva, 2003

[9] Key E. L., “An analysis of the structure and complexity of nonlinear binary sequence generators”, IEEE Trans. Inform. Theory, 22:6 (1976), 732–736 | DOI | MR | Zbl

[10] Niederreiter H., “Weights of cyclic codes”, Inform. Control, 34:2 (1977), 130–140 | DOI | MR | Zbl

[11] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. f. Math., 3 (1892), 265–284 | DOI | MR