Critical multitype branching processes in a~random environment
Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 23-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a multitype Galton–Watson process in a random environment generated by a sequence of independent identically distributed random variables. Assuming that the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices satisfies Spitzer's condition, we find the asymptotics of the survival probability at time $n$ as $n\to\infty$.
@article{DM_2007_19_4_a1,
     author = {E. E. D'yakonova},
     title = {Critical multitype branching processes in a~random environment},
     journal = {Diskretnaya Matematika},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_4_a1/}
}
TY  - JOUR
AU  - E. E. D'yakonova
TI  - Critical multitype branching processes in a~random environment
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 23
EP  - 41
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_4_a1/
LA  - ru
ID  - DM_2007_19_4_a1
ER  - 
%0 Journal Article
%A E. E. D'yakonova
%T Critical multitype branching processes in a~random environment
%J Diskretnaya Matematika
%D 2007
%P 23-41
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_4_a1/
%G ru
%F DM_2007_19_4_a1
E. E. D'yakonova. Critical multitype branching processes in a~random environment. Diskretnaya Matematika, Tome 19 (2007) no. 4, pp. 23-41. http://geodesic.mathdoc.fr/item/DM_2007_19_4_a1/

[1] Smith W. L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments. I, II”, Ann. Math. Statist., 42 (1971), 1499–1520, 1843–1858 | DOI | MR | Zbl

[3] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Probab., 13:3 (1981), 464–497 | DOI | MR | Zbl

[4] Weissener E. W., “Multitype branching processes in random environments”, J. Appl. Probab., 8:1 (1971), 17–31 | DOI | MR

[5] Kaplan N., “Some results about multidimensional branching processes with random environments”, Ann. Probab., 2:3 (1974), 441–455 | DOI | MR | Zbl

[6] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[7] Geiger J., Kersting G., “The survival probability of a critical branching process in a random environment”, Teoriya veroyatnostei i ee primeneniya, 45:3 (2000), 607–615 | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, I: predelnye teoremy”, Teoriya veroyatnostei i ee primeneniya, 48:2 (2003), 274–300 | MR | Zbl

[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, II: konechnomernye raspredeleniya”, Teoriya veroyatnostei i ee primeneniya, 49:2 (2004), 231–268 | MR | Zbl

[10] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatnostei i ee primeneniya, 51:1 (2006), 22–46 | MR

[11] Dyakonova E. E., “Ob asimptotike veroyatnosti nevyrozhdeniya mnogomernogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 11:1 (1999), 113–128 | MR | Zbl

[12] Dyakonova E. E., Geiger J., Vatutin V. A., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Relat. Fields, 10:2 (2004), 289–306 | MR | Zbl

[13] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 21:4 (1976), 813–825 | MR | Zbl

[14] Athreya K. B., Ney P. E., Branching processes, Springer, Berlin, 1972 | MR | Zbl

[15] Bertoin J., Doney R. A., “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22 (1994), 2152–2167 | DOI | MR | Zbl

[16] Kesten H., Spitzer F., “Convergence in distribution of products of random matrices”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 67:4 (1984), 363–386 | DOI | MR | Zbl

[17] Seneta E., Non-negative matrices. An introduction to theory and applications, Halsted, New York, 1973 | MR

[18] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR

[19] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, Moskva, 1984