A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria integer linear programming problem with a finite set of admissible solutions. With the use of Minkowski–Mahler inequality, we obtain a bound for the domain in the space of parameters of the problem equipped with some norm where the Pareto optimality of the solution is still retained. In the case of a monotone norm, we give a formula for the stability radius of the solution. As a corollary we obtain the formula for the stability radius in the case of the Hölder norm and, in particular, the Chebyshev norm in the space of parameters of a vector criterion.
@article{DM_2007_19_3_a5,
     author = {V. A. Emelichev and K. G. Kuz'min},
     title = {A general approach to studying the stability of {a~Pareto} optimal solution of a~vector integer linear programming problem},
     journal = {Diskretnaya Matematika},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
TI  - A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 79
EP  - 83
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/
LA  - ru
ID  - DM_2007_19_3_a5
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%T A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
%J Diskretnaya Matematika
%D 2007
%P 79-83
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/
%G ru
%F DM_2007_19_3_a5
V. A. Emelichev; K. G. Kuz'min. A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/

[1] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Problemy kibernetiki, 35 (1979), 169–184 | MR

[2] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995 | Zbl

[3] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii. Problemy, metody resheniya, issledovaniya, Naukova dumka, Kiev, 2003

[4] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[5] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychisl. matematiki i matem. fiziki, 36:1 (1996), 66–72 | MR | Zbl

[6] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization problems”, Oper. Res. Lett., 23:1 (1998), 1–7 | DOI | MR | Zbl

[7] Libura M., van der Poort E., Sierksma G., van der Veen J., “Stability aspects of the travelling salesman problem based on $k$-best solutions”, Discrete Appl. Math., 87 (1998), 159–185 | DOI | MR | Zbl

[8] Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0–1 programs”, Discrete Appl. Math., 91 (1999), 251–263 | DOI | MR | Zbl

[9] Gordeev E. N., “Issledovanie ustoichivosti zadachi o kratchaishem ostove v metrike $l_1$”, Zhurn. vychisl. matematiki i matem. fiziki, 39:5 (1999), 770–778 | MR | Zbl

[10] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[11] Sotskov Yu. N., Sotskova N. Yu., Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami, NAN Belarusi, Minsk, 2004

[12] Greenberg N. J., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Computational and stochastic optimization, logic programming, and heuristic search, Kluwer, Boston, 1998, 97–108

[13] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl

[14] Emelichev V. A., Kuzmin K. G., “Analiz ustoichivosti strogo effektivnogo resheniya odnoi vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Diskretnaya matematika, 16:4 (2004), 14–19 | Zbl

[15] Emelichev V. A., Kuzmin K. G., Nikulin Yu. V., “Stability analysis of the Pareto optimal solution for some vector boolean optimization problem”, Optimization, 54:6 (2005), 545–561 | DOI | MR

[16] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya odnoi vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Dokl. RAN, 401:6 (2005), 733–735 | MR

[17] Emelichev V. A., Nikulin Yu. V., “Ob ustoichivosti effektivnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Dokl. NAN Belarusi, 44:4 (2000), 26–28 | MR

[18] Bekkenbakh E., Bellman R., Neravenstva, Mir, Moskva, 1965