A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 79-83
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multicriteria integer linear programming problem with a finite set of admissible solutions. With the use of Minkowski–Mahler inequality, we obtain a bound for the domain in the space of parameters of the problem equipped with some norm where the Pareto optimality of the solution is still retained. In the case of a monotone norm, we give a formula for the stability radius of the solution. As a corollary we obtain the formula for the stability radius in the case of the Hölder norm and, in particular, the Chebyshev norm in the space of parameters of a vector criterion.
@article{DM_2007_19_3_a5,
author = {V. A. Emelichev and K. G. Kuz'min},
title = {A general approach to studying the stability of {a~Pareto} optimal solution of a~vector integer linear programming problem},
journal = {Diskretnaya Matematika},
pages = {79--83},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/}
}
TY - JOUR AU - V. A. Emelichev AU - K. G. Kuz'min TI - A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem JO - Diskretnaya Matematika PY - 2007 SP - 79 EP - 83 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/ LA - ru ID - DM_2007_19_3_a5 ER -
%0 Journal Article %A V. A. Emelichev %A K. G. Kuz'min %T A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem %J Diskretnaya Matematika %D 2007 %P 79-83 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/ %G ru %F DM_2007_19_3_a5
V. A. Emelichev; K. G. Kuz'min. A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/