A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 79-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria integer linear programming problem with a finite set of admissible solutions. With the use of Minkowski–Mahler inequality, we obtain a bound for the domain in the space of parameters of the problem equipped with some norm where the Pareto optimality of the solution is still retained. In the case of a monotone norm, we give a formula for the stability radius of the solution. As a corollary we obtain the formula for the stability radius in the case of the Hölder norm and, in particular, the Chebyshev norm in the space of parameters of a vector criterion.
@article{DM_2007_19_3_a5,
     author = {V. A. Emelichev and K. G. Kuz'min},
     title = {A general approach to studying the stability of {a~Pareto} optimal solution of a~vector integer linear programming problem},
     journal = {Diskretnaya Matematika},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - K. G. Kuz'min
TI  - A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 79
EP  - 83
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/
LA  - ru
ID  - DM_2007_19_3_a5
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A K. G. Kuz'min
%T A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
%J Diskretnaya Matematika
%D 2007
%P 79-83
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/
%G ru
%F DM_2007_19_3_a5
V. A. Emelichev; K. G. Kuz'min. A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem. Diskretnaya Matematika, Tome 19 (2007) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/DM_2007_19_3_a5/