Homomorphisms and endomorphisms of linear and alinear quasigroups
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study morphisms (automorphisms, endomorphisms) of linear and alinear quasigroups, give results on endomorphisms of an arbitrary quasigroup which generalise some results of a Shchukin's paper. We give necessary and sufficient conditions of homomorphisms of linear and alinear quasigroups in terms of endomorphisms of the corresponding group and present the form of an arbitrary endomorphism of linear, alinear, and $T$-quasigroups.
@article{DM_2007_19_2_a6,
     author = {A. Kh. Tabarov},
     title = {Homomorphisms and endomorphisms of linear and alinear quasigroups},
     journal = {Diskretnaya Matematika},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a6/}
}
TY  - JOUR
AU  - A. Kh. Tabarov
TI  - Homomorphisms and endomorphisms of linear and alinear quasigroups
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 67
EP  - 73
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a6/
LA  - ru
ID  - DM_2007_19_2_a6
ER  - 
%0 Journal Article
%A A. Kh. Tabarov
%T Homomorphisms and endomorphisms of linear and alinear quasigroups
%J Diskretnaya Matematika
%D 2007
%P 67-73
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a6/
%G ru
%F DM_2007_19_2_a6
A. Kh. Tabarov. Homomorphisms and endomorphisms of linear and alinear quasigroups. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 67-73. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a6/

[1] Safonova L. V., Schukin K. K., “Vychislenie avtomorfizmov i antiavtomorfizmov kvazigrupp”, Izv. AN SSR Moldova, 3:3 (1990), 49–55 | MR | Zbl

[2] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR

[3] Golovko I. A., “Endotopii v kvazigruppakh”, Rezyume dokladov 1 Vsesoyuznogo simpoziuma po teorii kvazigrupp i ee prilozheniyam, Sukhumi, 1968, 14–15

[4] Artamonov V. A., Salii V. N., Skornyakov L. A., Shevrin L. N., Shulgeifer E. E., Obschaya algebra, t. 2, Nauka, Moskva, 1991 | MR

[5] Lyapin E. S., “Nekotorye rezultaty iz teorii polugrupp i problema ikh pereneseniya v drugie oblasti algebry”, Rezyume dokladov 1 Vsesoyuznogo simpoziuma po teorii kvazigrupp i ee prilozheniyam, Sukhumi, 1968, 20–21

[6] Schukin K. K., Gushan V. V., “Predstavlenie parastrofov lup i kvazigrupp”, Diskretnaya matematika, 16:4 (2004), 149–157 | Zbl

[7] Belyavskaya G. B., Tabarov A. Kh., “Kharakteristika lineinykh i alineinykh kvazigrupp”, Diskretnaya matematika, 4:2 (1992), 142–147 | MR | Zbl