Optimal logarithmic functions for lifting of a~solution of an exponential congruence
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 51-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study is devoted to the problem of lifting of a solution of an exponential congruence in rings of integer algebraic numbers. To lift a solution in rings of integer rational numbers, Riesel suggested to use the Fermat quotients apparatus. With their use, the problem reduces to solution of a linear congruence modulo a prime number, and this congruence appears to be irreducible. In this paper we construct analogues of Fermat quotients in rings of integer algebraic numbers which also yield irreducible linear congruences for the problem of lifting of a solution in this case.
@article{DM_2007_19_2_a4,
     author = {I. A. Popovyan},
     title = {Optimal logarithmic functions for lifting of a~solution of an exponential congruence},
     journal = {Diskretnaya Matematika},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a4/}
}
TY  - JOUR
AU  - I. A. Popovyan
TI  - Optimal logarithmic functions for lifting of a~solution of an exponential congruence
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 51
EP  - 62
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a4/
LA  - ru
ID  - DM_2007_19_2_a4
ER  - 
%0 Journal Article
%A I. A. Popovyan
%T Optimal logarithmic functions for lifting of a~solution of an exponential congruence
%J Diskretnaya Matematika
%D 2007
%P 51-62
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a4/
%G ru
%F DM_2007_19_2_a4
I. A. Popovyan. Optimal logarithmic functions for lifting of a~solution of an exponential congruence. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 51-62. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a4/

[1] Riesel H., “Some soluble cases of the discrete logarithm problem”, BIT, 28:4 (1988), 839–851 | DOI | MR | Zbl

[2] Cohen H., Advanced topics in computational number theory, Springer, New York, 2000 | MR | Zbl

[3] Hess F., Pauli S., Pohst M. E., “Computing the multiplicative group of residue class rings”, Math. Comp., 72 (2003), 1531–1548 | DOI | MR | Zbl

[4] Popovyan I. A., “Pod'em resheniya pokazatelnogo sravneniya”, Matem. zametki, 80:1 (2006), 76–86 | MR | Zbl

[5] Nesterenko Yu. V., “Chastnye Ferma i $p$-adicheskie logarifmy”, Trudy po diskretnoi matematike, 5 (2002), 173–188

[6] Cherepnev M. A., “O nekotorom svoistve diskretnogo logarifma”, Tezisy dokl. XII mezhdunarodnoi konf. “Problemy teoreticheskoi kibernetiki”, Nizhnii Novgorod, 1999

[7] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, Moskva, 1964 | MR