On stability of an efficient solution of a~vector Boolean problem of maximisation of absolute values of linear functions
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 45-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a vector (multicriteria) problem of Boolean programming in the case where the partial criteria are the absolute values of linear functions. We study the limit level of disturbances of the coefficients of criterion functions in the space with metrics $l_\infty$ which preserves the Pareto optimality of the solution. We obtain a necessary and sufficient condition for the stability radius of such a solution to be infinite.
@article{DM_2007_19_2_a3,
     author = {E. Gurevsky and V. A. Emelichev},
     title = {On stability of an efficient solution of a~vector {Boolean} problem of maximisation of absolute values of linear functions},
     journal = {Diskretnaya Matematika},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a3/}
}
TY  - JOUR
AU  - E. Gurevsky
AU  - V. A. Emelichev
TI  - On stability of an efficient solution of a~vector Boolean problem of maximisation of absolute values of linear functions
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 45
EP  - 50
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a3/
LA  - ru
ID  - DM_2007_19_2_a3
ER  - 
%0 Journal Article
%A E. Gurevsky
%A V. A. Emelichev
%T On stability of an efficient solution of a~vector Boolean problem of maximisation of absolute values of linear functions
%J Diskretnaya Matematika
%D 2007
%P 45-50
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a3/
%G ru
%F DM_2007_19_2_a3
E. Gurevsky; V. A. Emelichev. On stability of an efficient solution of a~vector Boolean problem of maximisation of absolute values of linear functions. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 45-50. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a3/

[1] Emelichev V. A., Kuzmin K. G., “O radiuse ustoichivosti effektivnogo resheniya odnoi vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Doklady RAN, 401:6 (2005), 733–735 | MR

[2] Emelichev V. A., Kuzmin K. G., “Analiz ustoichivosti strogo effektivnogo resheniya odnoi vektornoi zadachi buleva programmirovaniya v metrike $l_1$”, Diskretnaya matematika, 16:4 (2004), 14–19 | MR | Zbl

[3] Emelichev V. A., Krichko V. N., Nikulin Yu. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control Cybernet., 33:1 (2004), 127–132 | MR | Zbl

[4] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 65:2 (2004), 79–92 | MR | Zbl