On an automaton model of pursuit
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 131-160
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the process of pursuing several independent of one another automata (preys) by a system of automata (predators) on a plane. We show that there exists a finite collective of predators which catches any finite independent system of preys such that the prey velocity is less than the predator velocity and their field of vision is not greater that the field of vision of predators, under any initial disposition of the preys provided that the predators start from one point.
@article{DM_2007_19_2_a13,
author = {N. Yu. Volkov},
title = {On an automaton model of pursuit},
journal = {Diskretnaya Matematika},
pages = {131--160},
year = {2007},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a13/}
}
N. Yu. Volkov. On an automaton model of pursuit. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 131-160. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a13/
[1] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR
[2] Kilibarda G., Kudryavtsev V. B., Ushchumlich Sh., “Nezavisimye sistemy avtomatov v labirintakh”, Diskretnaya matematika, 15:2 (2003), 3–39 | Zbl
[3] Kilibarda G., Kudryavtsev V. B., Ushchumlich Sh., “Kollektivy avtomatov v labirintakh”, Diskretnaya matematika, 15:3 (2003), 3–39 | MR | Zbl
[4] Grunskaya V. I., “O dinamicheskom vzaimodeistvii avtomatov”, Matematicheskaya kibernetika i ee prilozheniya k biologii, MGU, Moskva, 1987, 8–18