Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2007_19_2_a12, author = {Yu. S. Kharin and A. I. Petlitskii}, title = {A {Markov} chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters}, journal = {Diskretnaya Matematika}, pages = {109--130}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/} }
TY - JOUR AU - Yu. S. Kharin AU - A. I. Petlitskii TI - A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters JO - Diskretnaya Matematika PY - 2007 SP - 109 EP - 130 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/ LA - ru ID - DM_2007_19_2_a12 ER -
%0 Journal Article %A Yu. S. Kharin %A A. I. Petlitskii %T A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters %J Diskretnaya Matematika %D 2007 %P 109-130 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/ %G ru %F DM_2007_19_2_a12
Yu. S. Kharin; A. I. Petlitskii. A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 109-130. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/
[1] Fan J., Yao Q., Nonlinear time series, Springer, Berlin, 2003 | MR
[2] Collett D., Modelling binary data, Chapman Hall, Boca Raton, 2003 | MR | Zbl
[3] Yaffee R. A., McGee M., Time series analysis and forecasting, Academic Press, San Diego, 2000
[4] Waterman M. S, Mathematical methods for DNA sequences, CRC Press, Boca Raton, 1989 | MR | Zbl
[5] Kharin Yu. S., Bernik V. I., Matveev G. V., Agievich S. V., Matematicheskie i kompyuternye osnovy kriptologii, Novoe znanie, Minsk, 2003
[6] Zubkov A. M., “Datchiki psevdosluchainykh chisel i ikh primeneniya”, Trudy II Mezhdunarodnoi nauchnoi konferentsii “Matematika bezopasnosti informatsionnykh tekhnologii”, MGU, Moskva, 2003, 200–206 | MR
[7] Dub D., Veroyatnostnye protsessy, IL, Moskva, 1965
[8] Raftery A. E., “A model for high-order Markov chains”, J. Royal Statist. Soc., 47:3 (1985), 528–539 | MR | Zbl
[9] Kharin Yu. S., “Tsepi Markova s $r$-chastichnymi svyazyami i ikh statisticheskoe otsenivanie”, Dokl. NAN Belarusi, 48:1 (2004), 40–44 | MR
[10] Tikhomirova M. I., Chistyakov V. P., “O dvukh statistikakh tipa khi-kvadrat, postroennykh po chastotam tsepochek sostoyanii slozhnoi tsepi Markova”, Diskretnaya matematika, 15:2 (2003), 149–159 | MR | Zbl
[11] Maksimov Yu. I., “O tsepyakh Markova, svyazannykh s dvoichnymi registrami sdviga so sluchainymi elementami”, Trudy po diskretnoi matematike, 1 (1997), 203–220 | MR | Zbl
[12] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl
[13] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, Moskva, 1985 | MR | Zbl
[14] Basawa I. V., Prakasa Rao B. L. S., Statistical inference for stochastic processes, Academic Press, London, 1980 | MR | Zbl
[15] Kemeni D., Snell D., Konechnye tsepi Markova, Fizmatlit, Moskva, 1970
[16] Serfling R. J., Approximation theorems of mathematical statistics, Wiley, New York, 1980 | MR | Zbl
[17] Borovkov A. A., Matematicheskaya statistika, Nauka, Moskva, 1984 | MR
[18] Ivchenko G. I., Medvedev Yu. I., Matematicheskaya statistika, Vysshaya shkola, Moskva, 1984 | MR | Zbl
[19] Bolshev L. N., Smirnov N. V., Tablitsy matematicheskoi statistiki, Nauka, Moskva, 1983 | MR
[20] Aivazyan S. A., Enyukov I. S., Meshalkin L. D., Prikladnaya statistika. Issledovanie zavisimostei, Finansy i statistika, Moskva, 1985 | MR