A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 109-130

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a homogeneous Markov chain of order $s$ with $r$ partial connections for which the transition probabilities from any state to the next depend not on all $s$ preceding states but on $r$ selected states only. We construct statistical estimators of parameters and statistical tests for values of these parameters of the model and investigate their asymptotic properties. Algorithms to calculate these estimators are suggested. The results of computer simulations are also given.
@article{DM_2007_19_2_a12,
     author = {Yu. S. Kharin and A. I. Petlitskii},
     title = {A {Markov} chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters},
     journal = {Diskretnaya Matematika},
     pages = {109--130},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/}
}
TY  - JOUR
AU  - Yu. S. Kharin
AU  - A. I. Petlitskii
TI  - A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 109
EP  - 130
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/
LA  - ru
ID  - DM_2007_19_2_a12
ER  - 
%0 Journal Article
%A Yu. S. Kharin
%A A. I. Petlitskii
%T A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters
%J Diskretnaya Matematika
%D 2007
%P 109-130
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/
%G ru
%F DM_2007_19_2_a12
Yu. S. Kharin; A. I. Petlitskii. A Markov chain of order~$s$ with~$r$ partial connections and statistical inference on its parameters. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 109-130. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a12/