The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 6-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence $\mathbf X=\{X_1,\dots,X_n,\dots\}$ of independent identically distributed random variables, we construct the $s$-tuples $Y_i(s)=(X_i,\dots,X_{i+s-1})$, $i=1,2,\dots,n$, and consider the random variables $\mathbf F_i=f(Y_i(s))$, $i=1,2,\dots$, where $f$ is a function defined on the set $\mathbf R^s$ and taking non-negative integer values. We consider the sequence $\mathbf F=\{\mathbf F_1,\mathbf F_2,\dots\}$ and study two random variables, the variable $$ \mathbf Z_n(\mathbf F)=\sum_{1\le i_1\le n}\mathbf I\{\mathbf F_{i_1}=\mathbf F_{i_2}\} $$ equal to the number of matches of symbols on a segment of length $n$ of the sequence $\mathbf F$ (here $\mathbf I\{\cdot\}$ stands for the indicator of a random event), and the variable $$ \mathbf Z'_n(\mathbf F)=\sum_{1\le i_1+s\le i_2\le n}\mathbf I\{\mathbf F_{i_1}=\mathbf F_{i_2}\} $$ equal to the number of matches of values of the function $f$ of non-overlapping $s$-tuples of a segment of the sequence $\mathbf X$ of length $n+s-1$. With the use of the Stein method, we find sufficient conditions for the distribution of the random variables $\mathbf Z_n(\mathbf F)$ and $\mathbf Z'_n(\mathbf F)$ to converge to the compound Poisson law for the function $f$ of a general form. As corollaries to these results we obtain both known and new limit theorems for the number of matches of values of a function of segments of sequences in a polynomial scheme for a series of particular types of the function $f$.
@article{DM_2007_19_2_a1,
     author = {A. M. Shoitov},
     title = {The compound {Poisson} distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables},
     journal = {Diskretnaya Matematika},
     pages = {6--26},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/}
}
TY  - JOUR
AU  - A. M. Shoitov
TI  - The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 6
EP  - 26
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/
LA  - ru
ID  - DM_2007_19_2_a1
ER  - 
%0 Journal Article
%A A. M. Shoitov
%T The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables
%J Diskretnaya Matematika
%D 2007
%P 6-26
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/
%G ru
%F DM_2007_19_2_a1
A. M. Shoitov. The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 6-26. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/

[1] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:1 (1999), 53–75 | MR | Zbl

[2] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok, obrazuyuschikh latinskii pryamougolnik”, Diskretnaya matematika, 12:1 (2000), 24–46 | MR | Zbl

[3] Zubkov A. M., Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatnostei i ee primeneniya, 19:1 (1974), 173–181 | MR | Zbl

[4] Zubkov A. M., Mikhailov V. G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh velichin”, Teoriya veroyatnostei i ee primeneniya, 24:2 (1979), 267–279 | MR | Zbl

[5] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[6] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Naukova dumka, Kiev, 1989 | MR

[7] Mikhailov V. G., “Asimptoticheskaya normalnost v skheme konechno-zavisimogo razmescheniya chastits po yacheikam”, Matem. sb., 119:4 (1982), 509–520 | MR

[8] Mikhailov V. G., “Asimptoticheskaya normalnost razdelimykh statistik ot chastot $m$-tsepochek”, Diskretnaya matematika, 1:4 (1989), 92–103 | MR

[9] Mikhailov V. G., “Yavnye otsenki v predelnykh teoremakh dlya summ sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:4 (1994), 580–617

[10] Mikhailov V. G., “Otsenka tochnosti slozhnoi puassonovskoi approksimatsii dlya raspredeleniya chisla sovpadayuschikh tsepochek”, Teoriya veroyatnostei i ee primeneniya, 46:4 (2001), 713–723 | MR

[11] Mikhailov V. G., “Ob asimptoticheskikh svoistvakh raspredeleniya chisla par $H$-svyazannykh tsepochek”, Diskretnaya matematika, 14:3 (2002), 122–129 | Zbl

[12] Mikhailov V. G., Shoitov A. M., “Strukturnaya ekvivalentnost $s$-tsepochek v sluchainykh diskretnykh posledovatelnostyakh”, Diskretnaya matematika, 15:4 (2003), 7–34 | MR | Zbl

[13] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1982 | MR | Zbl

[14] Timashev A. N, “O veroyatnosti sovpadeniya vektorov chastot iskhodov nezavisimykh polinomialnykh skhem”, Tretya Vserossiiskaya shkola-kollokvium po stokhasticheskim metodam, Tezisy dokladov, TVP, Moskva, 1996, 156–157

[15] Shoitov A. M., “Povtoreniya znachenii funktsii ot otrezkov posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 12:3 (2000), 49–59 | MR | Zbl

[16] Shoitov A. M., “Predelnye raspredeleniya chisla naborov $H$-ekvivalentnykh otrezkov v ravnoveroyatnoi polinomialnoi skheme serii”, Diskretnaya matematika, 14:1 (2002), 82–98 | MR | Zbl

[17] Shoitov A. M., “O perestanovochnoi ekvivalentnosti tsepochek polinomialnoi skhemy”, Vestnik IKSI Akademii FSB RF, seriya K, Cpets. vyp. (2003), 107–113

[18] Shoitov A. M., “Predelnye raspredeleniya sluchainykh velichin, kharakterizuyuschikh svyaz tsepochek polinomialnoi skhemy strukturnoi ekvivalentnostyu”, Trudy po diskretnoi matematike, 8 (2004), 312–326

[19] Shoitov A. M., “Puassonovskoe priblizhenie dlya chisla povtorenii znachenii diskretnoi funktsii ot tsepochek”, Diskretnaya matematika, 17:2 (2005), 56–69 | MR

[20] Shoitov A. M., “Normalnoe priblizhenie dlya raspredeleniya chisla par ekvivalentnykh tsepochek v ravnoveroyatnoi skheme”, Obozrenie prikladnoi i promyshlennoi matematiki, 12:1 (2005), 204–205

[21] Barbour A. D., Holst L., Janson S., Poisson approximation, Oxford Univ. Press, Oxford, 1992 | MR | Zbl

[22] Roos M., “Stein method for compound Poisson approximation: The local approach”, Ann. Appl. Probab., 4 (1994), 1177–1187 | DOI | MR | Zbl

[23] Barbour A. D., Chen L. H. Y., Loh W.-L., “Compound Poisson approximation for non-negative random variables via Stein's method”, Appl. Probab., 20:4 (1992), 1843–1866 | MR | Zbl

[24] Barbour A. D., Xia A., “Poisson perturbation”, Probab. Statist., 3 (1999), 131–150 | DOI | MR | Zbl

[25] Janson S., “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1998), 305–312 | DOI | MR