The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables
Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 6-26

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence $\mathbf X=\{X_1,\dots,X_n,\dots\}$ of independent identically distributed random variables, we construct the $s$-tuples $Y_i(s)=(X_i,\dots,X_{i+s-1})$, $i=1,2,\dots,n$, and consider the random variables $\mathbf F_i=f(Y_i(s))$, $i=1,2,\dots$, where $f$ is a function defined on the set $\mathbf R^s$ and taking non-negative integer values. We consider the sequence $\mathbf F=\{\mathbf F_1,\mathbf F_2,\dots\}$ and study two random variables, the variable $$ \mathbf Z_n(\mathbf F)=\sum_{1\le i_1\le n}\mathbf I\{\mathbf F_{i_1}=\mathbf F_{i_2}\} $$ equal to the number of matches of symbols on a segment of length $n$ of the sequence $\mathbf F$ (here $\mathbf I\{\cdot\}$ stands for the indicator of a random event), and the variable $$ \mathbf Z'_n(\mathbf F)=\sum_{1\le i_1+s\le i_2\le n}\mathbf I\{\mathbf F_{i_1}=\mathbf F_{i_2}\} $$ equal to the number of matches of values of the function $f$ of non-overlapping $s$-tuples of a segment of the sequence $\mathbf X$ of length $n+s-1$. With the use of the Stein method, we find sufficient conditions for the distribution of the random variables $\mathbf Z_n(\mathbf F)$ and $\mathbf Z'_n(\mathbf F)$ to converge to the compound Poisson law for the function $f$ of a general form. As corollaries to these results we obtain both known and new limit theorems for the number of matches of values of a function of segments of sequences in a polynomial scheme for a series of particular types of the function $f$.
@article{DM_2007_19_2_a1,
     author = {A. M. Shoitov},
     title = {The compound {Poisson} distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables},
     journal = {Diskretnaya Matematika},
     pages = {6--26},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/}
}
TY  - JOUR
AU  - A. M. Shoitov
TI  - The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 6
EP  - 26
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/
LA  - ru
ID  - DM_2007_19_2_a1
ER  - 
%0 Journal Article
%A A. M. Shoitov
%T The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables
%J Diskretnaya Matematika
%D 2007
%P 6-26
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/
%G ru
%F DM_2007_19_2_a1
A. M. Shoitov. The compound Poisson distribution of the number of matches of values of a~discrete function of $s$-tuples in segments of a~sequence of random variables. Diskretnaya Matematika, Tome 19 (2007) no. 2, pp. 6-26. http://geodesic.mathdoc.fr/item/DM_2007_19_2_a1/