Shifted products of independent random variables with values in finite groups
Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 40-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sequences of random variables $$ \varkappa^{(N)}=\zeta_1\zeta_2\ldots\zeta_N, \quad \omega^{(N)}=\xi_1\zeta_1\xi_2\zeta_2\ldots\xi_N\zeta_N, \quad N\ge 1, $$ where $(\xi_N,\zeta_N)$, $N\ge 1$, is a sequence of independent identically distributed random variables with values in the Cartesian product $G\times G$ of a finite group $(G;\cdot)$. We investigate the degree of dependence of the random variables $\varkappa^{(N)}$ and $\omega^{(N)}$. Such problems arise in the study of a class of information security algorithms. In connection to this problem, we study the random variable $\omega_a^{(N)}$ with values in $G$ whose distribution coincides with the conditional distribution of the random variable $\omega^{(N)}$ under condition that $\varkappa^{(N)}=a$, where $a\in G$ is such that $\mathbf P\{\varkappa^{(N)}=a\}>0$. We give conditions of convergence and limit distributions of $\omega_a^{(s_N)}$ as $N\to\infty$, where $s_N$ is a sequence of integers tending to infinity in such a way that $\mathbf P\{\varkappa^{(s_N)}=a\}>0$.
@article{DM_2007_19_1_a5,
     author = {I. A. Kruglov},
     title = {Shifted products of independent random variables with values in finite groups},
     journal = {Diskretnaya Matematika},
     pages = {40--49},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2007_19_1_a5/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - Shifted products of independent random variables with values in finite groups
JO  - Diskretnaya Matematika
PY  - 2007
SP  - 40
EP  - 49
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2007_19_1_a5/
LA  - ru
ID  - DM_2007_19_1_a5
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T Shifted products of independent random variables with values in finite groups
%J Diskretnaya Matematika
%D 2007
%P 40-49
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2007_19_1_a5/
%G ru
%F DM_2007_19_1_a5
I. A. Kruglov. Shifted products of independent random variables with values in finite groups. Diskretnaya Matematika, Tome 19 (2007) no. 1, pp. 40-49. http://geodesic.mathdoc.fr/item/DM_2007_19_1_a5/

[1] Glukhov M. M., “O chislovykh parametrakh, svyazannykh s zadaniem konechnykh grupp sistemami obrazuyuschikh elementov”, Trudy po diskretnoi matematike, 1, 1997, 43–66 | MR

[2] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, 1997, 85–112 | MR

[3] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, Moskva, 1995